Understanding IFAS -Lessons Learned from the Hooksett (NH) Experience

NEWEA Annual Conference, Boston MA January 24, 2018





# Agenda

- Hooksett IFAS Background
- Hooksett Investigation Findings
- Key IFAS Design Parameters
- Hooksett IFAS Conclusions
- Recommended Improvements
- Project Take-Aways
- Acknowledgements
- Questions





## Hooksett IFAS Background

- WWTF constructed in 1970 and upgraded in 1974 and 1981 to be a 1.1 MGD BOD removal plant
- 2008/2009 Phase 2/2A Capital Improvements
  - Increase capacity to 2.2 MGD
  - Increase treatment to achieve full nitrification (<1.0 mg/L ammonia year-round)</li>





## Hooksett IFAS Background Cont.

- Integrated fixed film activated sludge (IFAS) technology chosen for the upgrade floating media
- Monies approved insufficient so Phase 2 upgrade changed to MBBR with future upgrade to IFAS
- Half way through Phase 2, ARRA monies become available so Phase 2A changes design from MBBR to IFAS





## Hooksett IFAS Background Cont.

- IFAS tanks went on-line Fall 2010
- Documented hydraulic backups occur in November 2010 and again in early March 2011 – construction is still ongoing and investigations are underway
- Major hydraulic backup occurs overnight March 6 into March 7, 2011. Significant mixed liquor and IFAS media overflow tanks and is lost to Merrimack River.



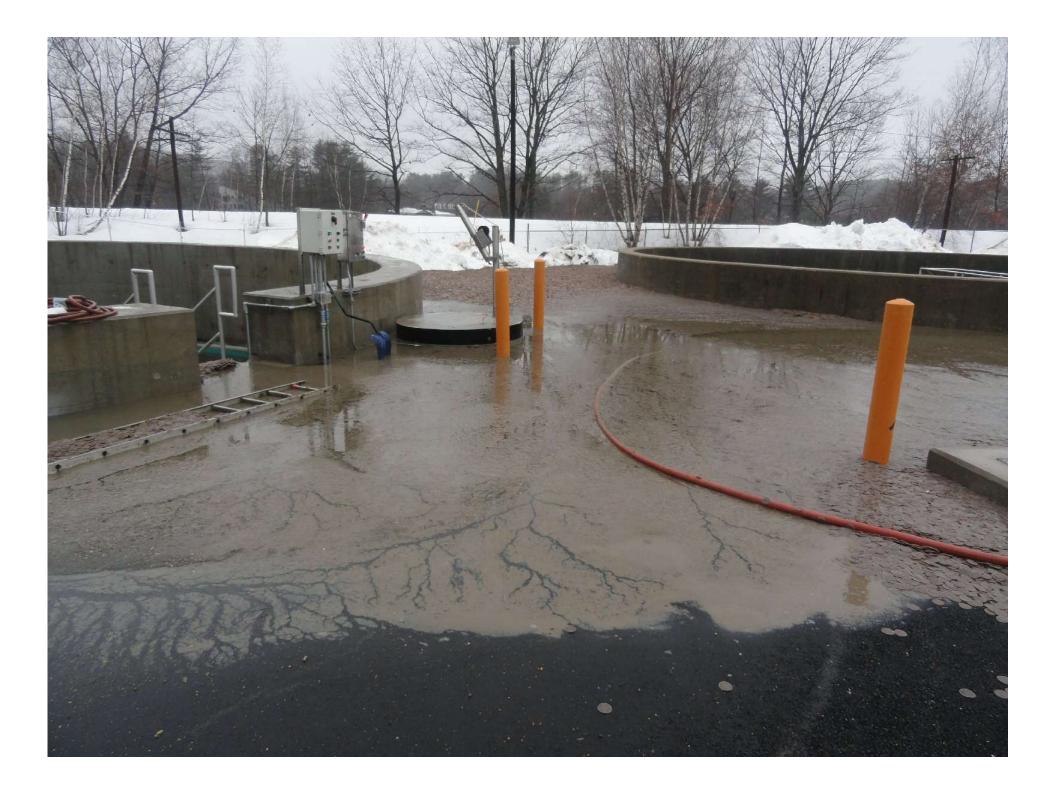


# Hooksett IFAS Background Cont.

- Two years pass with no resolution of costs or fixes between Owner-Contractor-Vendor
- Underwood hired by NHDOJ in 2013 as Expert Witness
- Four more years pass in litigation
- Settlement reached in December 2016
- Full Scale Pilot improvements design occurs in 2017
- Construction is scheduled to commence March 2018













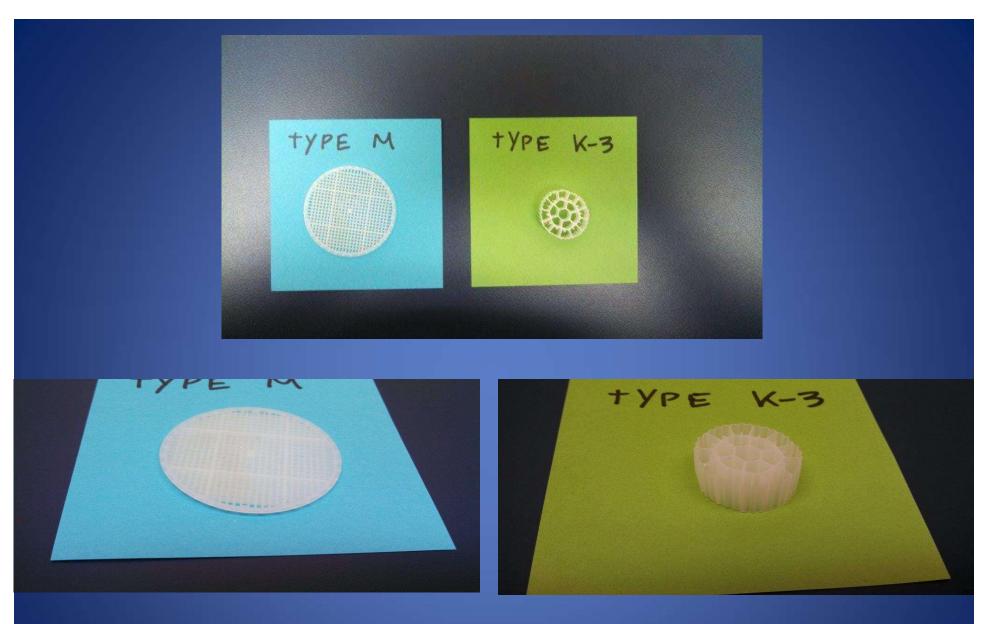





## Hooksett Investigation Findings

- The peak hour peaking factor used was too low (2.0)
- Yard piping around the BNR and IFAS tanks was sized based on MBBR (no RAS, no NRCY) and was not upsized when ARRA money became available
- The M-chip IFAS media utilized does not perform the same as traditional plastic floating media
  - Hydraulically
  - Biologically

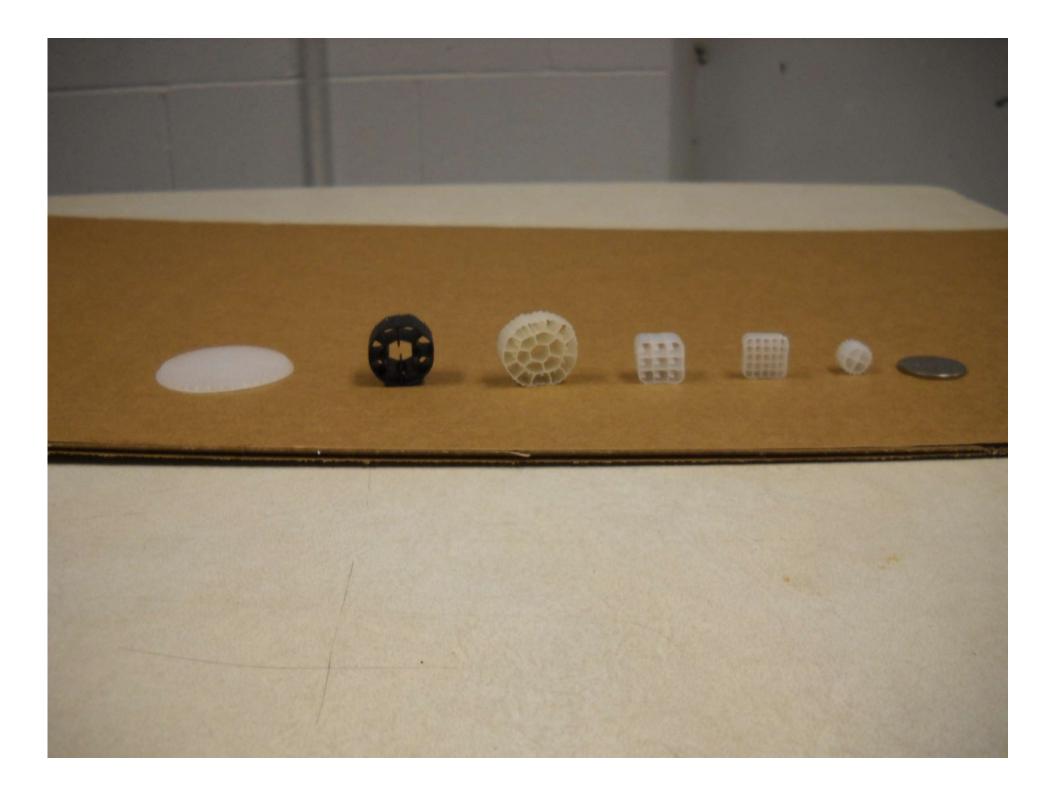





#### **KRUGER PLASTIC BIOFILM CARRIER CHARACTERISTICS**

| Manufacturer            | Name                                                  | Bulk Specific<br>Surface Area        | Dimensions (Depth; Diameter) |
|-------------------------|-------------------------------------------------------|--------------------------------------|------------------------------|
| Veolia Inc.<br>(Kruger) | AnoxKaldnes <sup>TM</sup> K1<br>or K1 Heavy           | 500 m <sup>2</sup> /m <sup>3</sup>   | 7 mm; 10 mm                  |
|                         | AnoxKaldnes <sup>TM</sup> K3                          | $500 \text{ m}^2/\text{m}^3$         | 12 mm; 25 mm                 |
|                         | AnoxKaldnes <sup>TM</sup><br>Biofilm Chip (M)         | 1,200 m <sup>2</sup> /m <sup>3</sup> | 2 mm; 48 mm                  |
|                         | AnoxKaldnes <sup>TM</sup><br>Biofilm Chip (P)         | 900 m <sup>2</sup> /m <sup>3</sup>   | 3 mm; 45 mm                  |
|                         | AnoxKaldnes <sup>TM</sup><br>Matrix <sup>TM</sup> Sol | 800 m <sup>2</sup> /m <sup>3</sup>   | 4 mm; 25 mm                  |














# Key IFAS Design Parameters

- Fine Screening
- Media Geometry
- Media Fill Fraction and Surface Area
- Biological Air Requirements
- Mixing Air Requirements
- Reactor L:W Ratio
- Approach Velocity and Screen Loading Rate
- Media Retention Screen Design
  - Diameter
  - Slot size
- Arrangement

- Length

– Number

- Air sparge!!





### **Hooksett IFAS Comparison to Industry Standard**

| Parameter                                                             | Hooksett WWTF                                                                                        | Industry<br>Standard*              | Comment     |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------|-------------|--|
| Fine Screening                                                        | 6 mm then 3 mm                                                                                       | 3 – 6 mm                           | ОК          |  |
| Geometry (diameter and thickness)                                     | Large and flat                                                                                       | Small and thick                    | Not typical |  |
| Applied Specific Surface Area<br>( media SSA x maximum fill fraction) | $\begin{array}{l} 1,200 \text{ m}^2/\text{m}^3 \ge 0.55 = \\ 660 \text{ m}^2/\text{m}^3 \end{array}$ | 330 m <sup>2</sup> /m <sup>3</sup> | High        |  |
| Biological Air Requirements                                           | 3.0 - 5.0 mg/L                                                                                       | 2.0 mg/L                           | High        |  |
| Mixing Air Requirements                                               | 650 scfm<br>(0.9 scfm/ft <sup>2</sup> )                                                              | $0.4 - 0.7 \text{ scfm/ft}^2$      | High        |  |
| Reactor L:W Ratio                                                     | 1.24:1                                                                                               | 0.5:1 - 1.5:1                      | OK          |  |
| Tank End Wall Approach Velocity and                                   | 28 m/hr                                                                                              | 30 - 35 m/hr                       | OK          |  |
| Screen Hydraulic Loading Rate                                         | 54 m/hr                                                                                              | 50 – 55 m/hr                       | OK          |  |
| Media Retention Screen Diameter                                       | 12 inches                                                                                            | 16 inches                          | High        |  |
| Media Retention Screen Submergence                                    | 20%                                                                                                  | 35% to 65 %                        | Low         |  |
| Air Spargers                                                          | No                                                                                                   | Yes                                | Not typical |  |

\*Industry Standard refers to values used for traditional plastic floating media



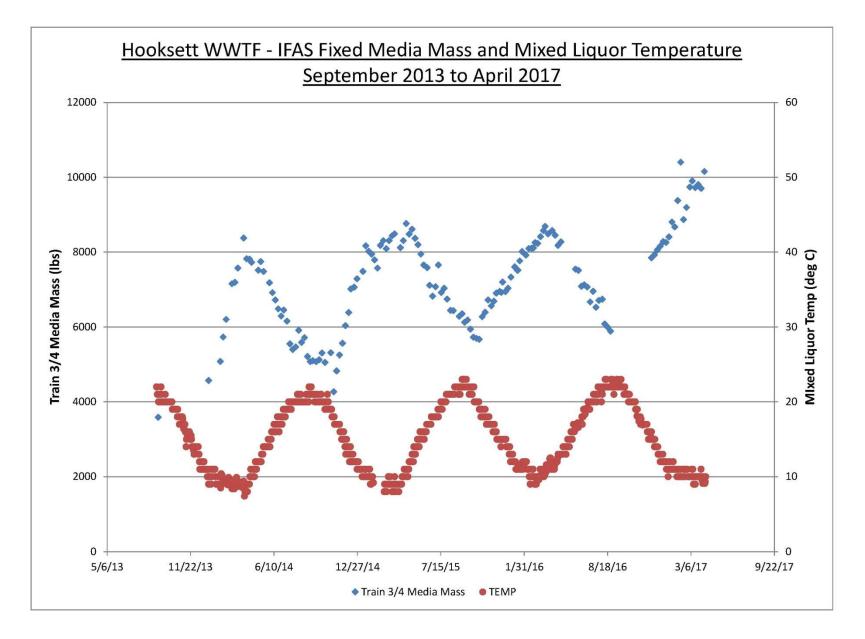




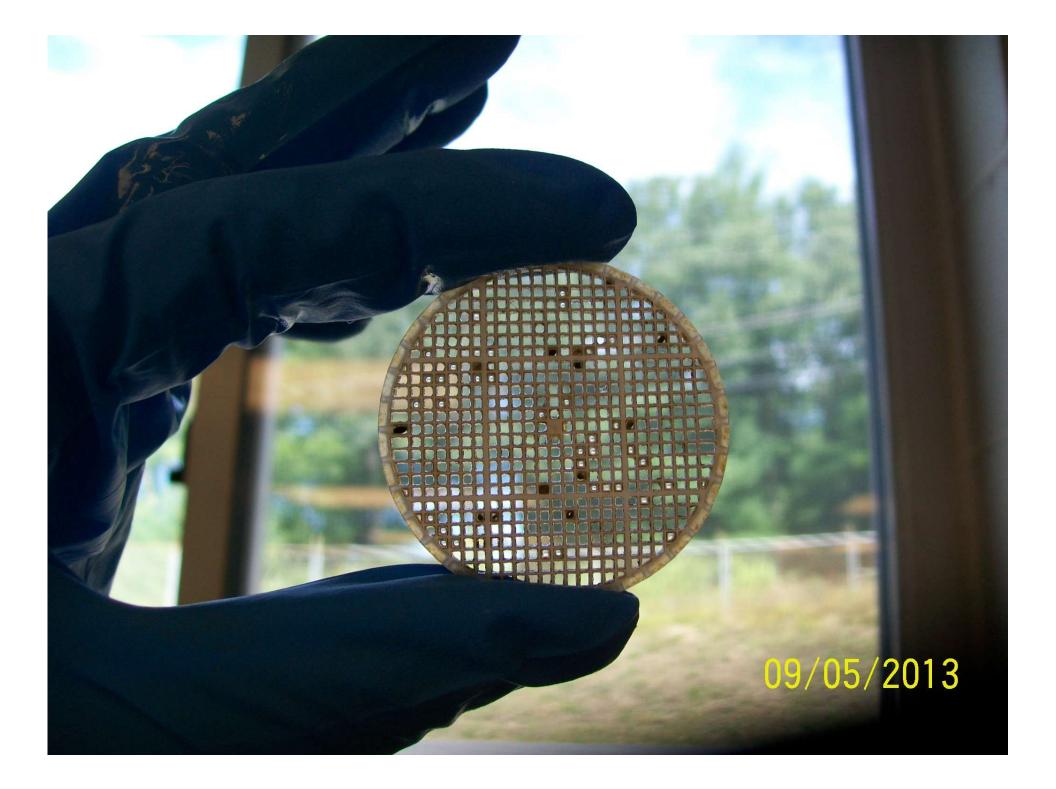


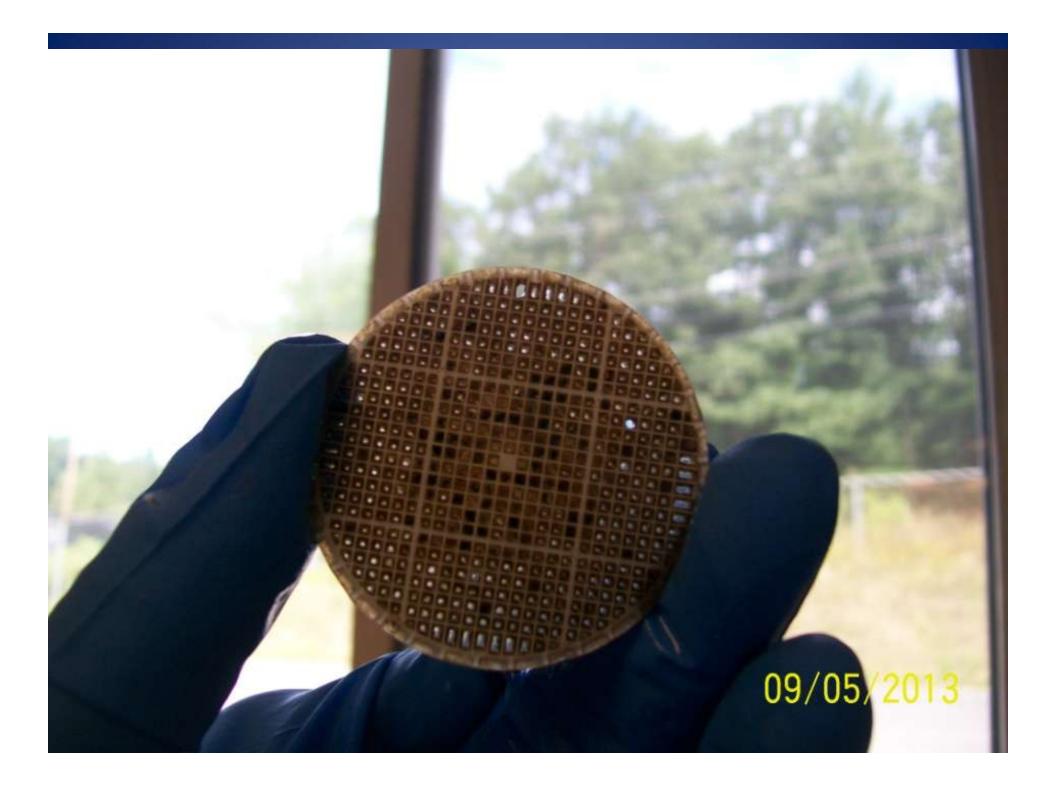


|         |            |       |           | Information taken from SCADA output graphs |             |                 |             |                       |       |                 |              |                   |                |                |
|---------|------------|-------|-----------|--------------------------------------------|-------------|-----------------|-------------|-----------------------|-------|-----------------|--------------|-------------------|----------------|----------------|
|         | Date       | Test  | Time      | Blower Speed (Hz)                          |             | Air Flow (SCFM) |             | Effluent Q            | RAS Q | Nitrate Recycle | IFAS Q (MGD) | Screen Hydr       | Screen Hydr    |                |
| Event ( | (mm/dd/yy) | (Y/N) | (24 hour) | Blower No.1                                | Blower No.2 | Blower No.1     | Blower No.2 | <b>Total Air Flow</b> | (MGD) | (MGD)           | Q (MGD)      | (Eff + RAS + Nit) | Loading (m/hr) | Loading (m/hr) |
| 1       | 11/22/10   | N     |           |                                            |             |                 |             |                       |       |                 |              |                   | NOMINAL        | ACTUAL         |
| 2       | 03/03/11   | Ν     |           |                                            |             |                 |             |                       |       |                 |              |                   |                |                |
| 3       | 03/03/11   | N     |           |                                            |             |                 |             |                       |       |                 |              |                   |                |                |
| 4       | 03/06/11   | N     | 20:15     | 50                                         | 35          | 1888            | 1283        | 3171                  | 1.25  | 0.93            | 1.04         | 3.22              | 40             | 56             |
| 5       | 09/28/11   | Y     | 13:30     | 30                                         | 34          | 1131            | 1253        | 2383                  | 2.60  | 0.77            | 1.00         | 4.37              | 54             | 76             |
| 6       | 10/05/11   | Y     | 8:35      | 22                                         | 30          | 834             | 1131        | 1965                  | 2.87  | 0.77            | 0.98         | 4.62              | 57             | 80             |
| 7       | 10/13/11   | Y     | 11:20     | 30                                         | 35          | 1131            | 1283        | 2414                  | 2.45  | 0.89            | 1.10         | 4.44              | 55             | 77             |
| 8       | 11/04/11   | N     | 9:25      | 30                                         | 25          | 1131            | 948         | 2079                  | 1.50  | 0.91            | 1.11         | 3.52              | 43             | 61             |
| 9       | 11/04/11   | Y     | 14:15     | 22                                         | 30          | 834             | 1131        | 1965                  | 1.80  | 0.85            | 1.11         | 3.76              | 46             | 65             |
| 10      | 01/29/12   | N     | 15:00     | 22                                         | 38          | 834             | 1405        | 2239                  | 1.75  | 0.91            | 0.85         | 3.51              | 43             | 61             |
| 11      | 02/08/12   | Y     | 11:40     | 30                                         | 22          | 1131            | 834         | 1965                  | 3.60  | 0.89            | 1.04         | 5.53              | 68             | 96             |
| 12      | 02/08/12   | Y     | 15:00     | 30                                         | 22          | 1131            | 834         | 1965                  | 2.10  | 0.89            | 1.64         | 4.63              | 57             | 81             |
| 13      | 02/08/12   | Y     | 19:10     | 30                                         | 30          | 1131            | 1131        | 2261                  | 3.25  | 0.89            | 0.55         | 4.69              | 58             | 82             |
| 14      | 02/09/12   | Y     | 10:55     | 22                                         | 30          | 834             | 1131        | 1965                  | 1.90  | 0.83            | 1.00         | 3.73              | 46             | 65             |
| 15      | 02/09/12   | Y     | 12:45     | 22                                         | 30          | 834             | 1131        | 1965                  | 2.20  | 0.91            | 1.38         | 4.49              | 55             | 78             |
| 16      | 02/24/12   | Y     | 8:35      | 22                                         | 30          | 834             | 1131        | 1965                  | 1.75  | 0.86            | 1.66         | 4.27              | 52             | 74             |
| 17      | 02/24/12   | Y     | 10:15     | 22                                         | 30          | 834             | 1131        | 1965                  | 1.55  | 0.86            | 1.27         | 3.68              | 45             | 64             |
| 18      | 06/19/12   | Y     | 14:00     | 22                                         | 30          | 834             | 1131        | 1965                  | 2.15  | 1.09            | 1.27         | 4.51              | 55             | 79             |
| 19      | 06/20/12   | Y     | 14:40     | 30                                         | 55          | 1131            | 2086        | 3217                  | 2.45  | 1.08            | 1.18         | 4.71              | 58             | 82             |
| 20      | 08/16/12   | Y     | 14:00     | 22                                         | 34          | 834             | 1253        | 2087                  | 1.55  | 0.45            | 2.74         | 4.74              | 58             | 83             |
| 21      | 11/06/12   | Y     | 10:00     | 22                                         | 35          | 834             | 1283        | 2117                  | 1.00  | 0.86            | 2.74         | 4.60              | 56             | 80             |
| 22      | 01/22/13   | Ν     | 15:45     | 35                                         | 22          | 1283            | 834         | 2117                  | 0.77  | 0.77            | 0.86         | 2.40              | 29             | 42             |
| 23      | 12/24/13   | N     | 15:35     | 22                                         | 38          | 834             | 1405        | 2239                  | 0.95  | 0.77            | 1.01         | 2.73              | 34             | 48             |
| 24      | 12/25/13   | N     | 14:50     | 22                                         | 50          | 834             | 1888        | 2722                  | 0.88  | 0.72            | 1.01         | 2.61              | 32             | 45             |
| 25      | 12/28/13   | N     | 16:00     | 44                                         | 50          | 1650            | 1888        | 3538                  | 0.88  | 0.77            | 1.01         | 2.66              | 33             | 46             |
| 26      | 03/17/14   | N     | 20:45     | 22                                         | 44          | 834             | 1650        | 2484                  | 1.04  | 0.53            | 0.95         | 2.52              | 31             | 44             |
| 27      | 03/21/14   | N     | 8:30      | 22                                         | 44          | 834             | 1650        | 2484                  | 1.50  | 0.69            | 0.68         | 2.87              | 35             | 50             |
| 28      | 03/30/14   | N     | 8:30      | 22                                         | 34          | 834             | 1253        | 2087                  | 1.55  | 0.90            | 0.34         | 2.79              | 34             | 49             |
| 29      | 03/30/14   | N     | 10:30     | 22                                         | 34          | 834             | 1253        | 2087                  | 1.70  | 0.70            | 0.34         | 2.74              | 34             | 48             |
| 30      | 03/30/14   | N     | 18:45     | 22                                         | 34          | 834             | 1253        | 2087                  | 1.60  | 0.50            | 0.34         | 2.44              | 30             | 42             |
| 31      | 04/05/15   | N     | 12:46     | 22                                         | 44          | 834             | 1650        | 2484                  | 1.55  | 0.69            | 0.72         | 2.95              | 36             | 51             |


#### TABLE 4. HISTORY OF HOOKSETT IFAS RETENTION SCREEN CLOGGING

Notes:


1. Air flow taken from blower output table from the project O&M Manual.


2. Air knives were installed in IFAS reactors 3 and 4 in July 2012. They were upgraded in April 2014 and a formal cleaning SOP was initialted in May 2014.

3. Event 22 represents conditons at the time of a major clogging after the air knives clogged.



N:\PROJECTS\HOOKSETT, NH\REALNUM\1896 WWTF Capacity Estimate\08\_Comp\Plant Data\2005-2014 Plant Data\June 2005-2016 Plant Data with peaking factors.xlsx





## Hooksett IFAS Conclusions

- Traditional retention screen hydraulic loading rates do not work for M-chip media
- Due to the geometry of the M-chip, higher than normal mixing air is required and air spargers are a must
- Although M-chip has higher available surface area than traditional IFAS media, the surface area is not fully utilized





## **Recommended Improvements**

## Full Scale Pilot – One Train of 2 Tanks

- Replace undersized yard piping out of IFAS tanks
- Reduce media fill fraction to 35% (from 55% and 52%)
- Modify SCADA air control to maintain minimum mixing air of 1,300 SCFM per tank (to be confirmed)
- Increase the number of screens in each IFAS tank from 3 to 6, effectively reducing screen loading rate to 27 m/hr
- Add air spargers under all screens and maintain air flow rate of 60 scfm per screen
- Add an alkalinity addition system





## Recommended Improvements Cont.

## Full Scale Pilot – Goals

- Confirm that full nitrification to less than 1.0 mg/L ammonia can be met at an average daily flow of 0.67 MGD down to 10 deg C
- Confirm that a peak forward flow of 4.7 MGD can be passed through IFAS Train 2 during the winter without causing backups at a reasonable mixing air flow rate

## Next Steps

• Build more IFAS tanks!





# Project Take-Aways

- If it's too good to be true, it probably is
- Verify equipment vendor claims; make them produce full scale evidence of success with proposed product
- IFAS is a viable technology; as with anything it must be applied correctly
- IFAS systems using floating media should always have air spargers, high level alarms, and SCADA automated controls to combat backups
- Do not assume 100% of the media surface area will be utilized





# Acknowledgements

- New Hampshire Department of Justice
- New Hampshire Department of Environmental Services
- Hooksett Sewer Commission
  - Sidney Baines, Chair
  - Frank Kotowski, Commissioner
  - Roger Bergeron, Commissioner
  - Bruce Kudrick, Superintendent
- Dr. Clifford Randall, PhD.
- W. Steven Clifton, Underwood Engineers, Inc.





# Questions??

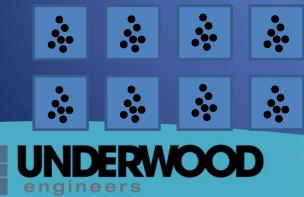
27







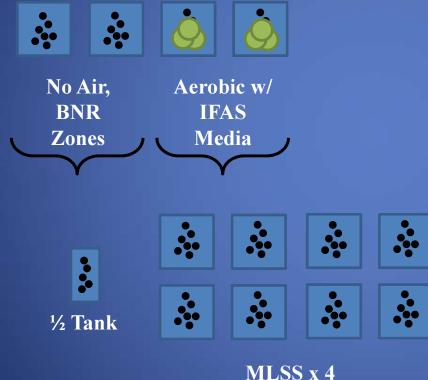
## Traditional Activated Sludge Design


1. Hooksett: 1.1 MGD, BOD Removal Only



2. Hooksett: 1.1 MGD, BOD and Ammonia Removal




3. Hooksett: 2.2 MGD, BOD and Ammonia Removal





# Kruger IFAS Design

#### 4. Hooksett: 2.2 MGD, BOD and Ammonia Removal







## Comparison of Designs

#### 4. Hooksett: 2.2 MGD, BOD and Ammonia Removal





