Modelling Ammonia Based Aeration Control in Real Time with Online Instrumentation

<u>Hach</u>	<u>City of San Diego</u>	
Dave Commons	Robert Relph	
Bob Dabkowski	George Wendorf	
Kevin Menning		
Melody White		

New England Water Environment Association 2018 Annual Conference Boston, Massachusetts Wednesday, January 24, 2018

Problem: Oversized Blowers

- Expense of energy
- Waste of dissolved oxygen
- Floc shearing/settleability issues
- What size blowers do we really need?
- What is the most efficient operation?
- How quick is the payback?

Solution: Model ABAC in Real Time

- Ammonia based aeration control (ABAC)
 - Use just enough dissolved oxygen to nitrify to desired setpoint
 - Assumes BOD is removed before nitrification is complete
- Hach Real Time Controller for Nitrification (RTC-N)
 - Calculates the optimal DO concentration for ABAC
 - Use for either modelling or controlling a process
 - Most utilities don't have modelling software
- Actual DO "Optimal" DO = \$\$ Savings \$\$

AMMONIA BASED AERATION CONTROL (ABAC)

Imagine the Aeration Basin as a graph...

"Normal Operation": Add more air than necessary

Sludge

AMMONIA BASED AERATION CONTROL (ABAC)

Sludge

RTC-N nitrification controller

- Typical installation
 - Aeration Influent & Effluent Ammonia Concentration
 - TSS Concentration & LDO (temperature required)
 - Use existing DO Control system

Influent & effluent ammonia

Needed vs Maximum Nitrification Rate

SRT, Nitrifier Concentration, Growth & Decay

ABAC DO vs Actual DO

Results from real time modelling

	Average Actual Dissolved Oxygen	3 10	
	Concentration (mg/L)	5.10	
	Average Optimal Dissolved	1 22	
	Oxygen Concentration (mg/L)	1.22	
	Average Potential Energy	24 20/	
	Savings (%)	24.2%	

Conclusions

- Significant energy savings possible with ABAC (65.8%) along with enhanced denitrification
- Needed vs Maximum nitrification rate allows operators to manage sidestreams
- Nitrification rate, Nitrifier concentration, Optimal DO data will help engineering design appropriately sized system
- Hach RTC-N system suitable for modelling or control of unit processes