David Bowen, PE | Wright-Pierce **Andrew Grota, PE** | Wright-Pierce

Implementation of Nutrient Removal Upgrades in Cranston, RI

A Phased-Approach to Achieving Effluent Limits Entering the Pawtuxet River

Helps Control Capital Improvement Costs

Presentation Overview

- Project Overview
- Facility Planning
- Technology Selections and Why?
- Design Challenges
- Costs
- Construction and Operation
- Questions & Discussion

Project Overview Background

Water Pollution Control Facility (WPCF)

- 4th largest plant in Rhode Island
- Advanced secondary wastewater treatment facility
- Services the City and limited areas of Johnston and West Warwick
- Discharges to Pawtuxet River and Narragansett Bay

Project Overview Existing Conditions

WPCF Flow Capacity

- Licensed Average Monthly Flow = 20.3 mgd
- Design Maximum Daily Flow = 36.0 mgd
- Design Peak Hourly Flow = 44.0 mgd
- Average Daily Flow = 14.4 mgd

Unique Features

- Merchant Sludge \$ Revenue
- Septage ~40,000 gpd (average)
- Effluent reuse FPL cooling tower (2 5 mgd)

Project Overview History

Project Overview Key Issues

- Secondary Processes Operating at/or slightly above design capacity (BOD₅ and TN)
 - Stressed process operations!
- Elevated wet weather flows
- Several SIUs have adverse impact on plant performance
 - Landfill Leachate no local limit for BOD₅ or TN
 - rDON concentration future concern?

Prior cost estimate for needed WPCF improvements ~\$50M

Project Overview Facility Plan Challenges

Influent Loads

- Significant influent BOD₅ loading increase
 - Near 50% increase from 2007 2010
- Significant influent TKN loading increase
 - Dec. 2009 rapid increase loading nearly double in three years
- Supplemental Sampling Effort 2010- 2011
- Consent Agreement schedule
 - FPA due June 1, 2011
- Budgetary concerns

Project Overview Influent BOD₅ Loading

Project Overview Influent TKN Loading

Slide 9

Project Overview Influent NH₃ Loading

Engineering a Better Environment

Project Overview What's Changed?

Influent Loading Change

- RIRRC landfill leachate "OUT"
 - December 2010
 - Most significant influent pollutant loading to plant
 - BOD₅ (~ 15 25%)
 - Nitrogen (~ 30 50%)
 - Arsenic (~ >50%)

✓ Notable Cost Savings to the City \$\$

Project Overview Goals and Objectives?

- Identify solutions to meet new permit limits:
 - Total Nitrogen
 - Total Phosphorus
 - Total Arsenic
- "Our objective was to select the <u>lowest cost technical</u> <u>solutions which satisfy the City's current wastewater needs</u> and can be expandable to address possible future needs"
- Obtain Regulatory Compliance

Facility Planning Alternatives Evaluation

Facility Planning Alternatives Evaluation

SECONDARY TREATMENT – NITROGEN REMOVAL

Multiple technologies evaluated

- MLE Process- reuse existing "No Build"
 - Insufficient capacity
- ✓ <u>Bardenpho (4-Stage)</u> flexibility for future limits!
 - ✓ Add IFAS Plastic Media (future) \$
- Existing MLE combined with Tertiary Denitrification
 - MLE with Moving Bed Bioreactor \$\$
 - MLE with Biological Aerated Filter \$\$\$
- Membranes \$\$\$\$

Nitrogen Removal "Phased Approach"

✓ Considered projected loads

 Uncertainty: when will landfill leachate be out?

 Regulatory coordination/ approvals (RIDEM)

✓ Reduces capital costs

Nitrogen Removal "Phased Approach"

PHASE 1 IMPROVEMENTS

Bardenpho (4-Stage Process)

- ✓ Allows for "Phased Approach"
- ✓ Lowest cost (reuse existing tanks)
- ✓ Proven track-record
- ✓ Similar to current MLE process operation
- ✓ Flexibility for future loads/limits (add plastic media)

PHASE 2 IMPROVEMENTS

- ✓ WPCF influent loads exceed 90% Phase 1 capacity
- ✓ "Trigger Limits"
 - cBOD5 load of 32,300 lbs/day 120-day moving average
 - TKN load of 5,900 lbs/day120-day moving average

Enhanced 4-Stage Bardenpho

- IFAS media
- Fine Screen (.6 mm band screening system – Headworks)
- Media Retention Screens (in aeration tanks)
- Medium bubble diffusers
- Additional 525 HP Blower

Phosphorus & Arsenic Removal Approach

TERTIARY TREATMENT – PHOSPHORUS & ARSENIC REMOVAL

Ballasted Flocculation Process

- ✓ Proven track-record
- ✓ Low Headloss (no pumping 44 mgd peak hour)
- ✓ Lowest cost (*small footprint, low chemical consumption*)
- ✓ Flexibility

Design Challenges

General

- Maintain plant operations (chemical deliveries, sludge, septage)
- Construction Sequencing (Landfill still "IN" access to Aeration Tanks)

Aeration Tanks

- Deep aeration tanks (25-feet)
- Mixing *reuse existing mixers (2006)*
- Floatables Control (FOG)
- Medium Voltage Standby Power (existing 480V Standby Power System)

Tertiary Treatment Facility

- Abandoned WPCF *unknowns*
- Deep excavation
- Groundwater level

Technology Selection Summary

- Nitrogen Removal
 - ✓ Bardenpho (4-Stage)
 - Most flexible cost-effective solution!
 - Pre-anoxic Zones 1 &2 (existing) retained ability for 5-Stage Bardenpho if lower TN loading
 - Bio-P removal, 30% Ferric reduction save \$
- Phosphorus and Arsenic Removal
 - ✓ Ballasted Flocculation *Robust Technology*!
- Influent Screening System (³/₈-inch screens)
- Medium Voltage Standby Power Generator (Aeration Tank Blowers)
 ✓ Consent Agreement

Capital Costs

Project	Cost
Original Project Estimate	\$50 million
Phase 1 Upgrades – as Constructed	\$16.8 million
Phase 2 Upgrades (future??)	\$13.4 million

"Phased Approach" Reduced Capital Costs by \$33.2 Million

✓ City qualified for principal forgiveness reduction (additional savings)

Construction Overview

Headworks Building Improvements

- A . 36

 Installed 2 mechanical climber screens and 2 washer compactors

Standby Generator Facility

New Medium Voltage Standby Power System

- 1,500 kW diesel generator
- Med. Voltage (4160V) ATS
- Outdoor Walk-In Enclosure

Aeration Tank Improvements

Phase 1 Improvements

- 4-Stage Bardenpho (4 Aeration Tanks)
- Supplemental Carbon System
- New selector walls
- Relocation of internal recycle pumps and mixers

Aeration Tank Improvements Supplemental Carbon Facility

Aeration Tank Improvements Construction

Aeration Tank Improvements Pre-Construction Hydraulics

Aeration Tank Improvements Post-Construction Hydraulics

Aeration Tank Improvements Effluent Total Nitrogen

Tertiary Treatment Facility

- Ballasted Flocculation System redundant treatment trains
- Chemical Feed Systems TP and TA removal
 - Ferric Chloride (coagulation)
 - Lime (pH adjustment)
 - Polymer (flocculation)
- Kruger ACTIFLO Turbo[®] system
 - compact footprint
 - reduced energy and operational costs

Tertiary Treatment Facility Construction

Tertiary Treatment Facility Building Construction

BAY CRANE

Tertiary Treatment Facility "Finished Product"

1--1:

- ✓ "Phased Approach" to Nitrogen Control saved city money
- ✓ Achieved water quality objectives
- ✓ Largest ballasted flocculation system in RI
- ✓ No net increase in construction cost
- ✓ City qualified for principal forgiveness

Project Team

OWNER

OPERATOR

GENERAL

ENGINEER

Kenneth Mason, PE Director of Public Works Edward Tally Environmental Program Manager **Earl Salisbury** Superintendent, Project Manager

David Jacques Senior Project Manager Erik Costello Superintendent David Bowen, PE Associate, Senior Project Manager Andrew Grota, PE Project Engineer

Implementation of Nutrient Removal Upgrades in Cranston, RI

Thank You

A Phased-Approach to Achieving Effluent Limits Entering the Pawtuxet River

Helps Control Capital Improvement Costs

Bullpen Slides

Facilities Planning Alternatives Evaluation

TERTIARY TREATMENT – PHOSPHORUS & ARSENIC REMOVAL

Technologies evaluated

- ✓ Ballasted Flocculation
- Activated Filtration \$
- Dissolved Air Floatation \$

Ballasted Flocculation System

Effluent Flow Meter

- Magnetic flow meter
- Improved hydraulics
- Eliminated downstream pumping

Tertiary Treatment Facility Process Tanks

JANUARY 21 – 24 Boston Marriott Copley Place Boston, Massachuseatte

Tertiary Treatment Facility Chemical Feed Systems

Tertiary Treatment Facility Pumping Equipment

Project Overview *Existing Conditions*

Unique Features Privatized Operations

 1997: 25-year lease Agreement - Triton Ocean State, LLC (operated by Veolia)

- Merchant Sludge \$ Revenue
- Septage ~40,000 gpd (average)
- Effluent reuse FPL cooling tower (2 5 mgd)

ANUARY 21 – 24 oston Marriott Copley Place oston, lassachuisetts

