

WASTEWATER LOAD MODELLING

What you don't know can hurt you!

New England Water Environment Association January 24, 2018

Agenda

- What is a WLM?
- Why develop a WLM?
- How do I develop a WLM?
- Considerations when developing a WLM
- Do WLMs work? (Case Studies)

What is a wastewater load model?

What is a WLM?

What is a WLM?

- A tool used to predict influent loading to wastewater treatment plant (WWTP)
 - Organic (chemical oxygen demand (COD))
 - Nutrient (nitrogen (N) and phosphorus (P))
 - Hydraulic (flow)
- Equates raw materials to constituents of concern (COC)
 - Based on stoichiometry
- Developed so user can understand the impact of its raw materials on wastewater
- Developed in MS Excel to be easily customized and modified
- "Living" Model of production

Why develop a wastewater load model?

Why develop a WLM?

- Users often don't understand the potential impact of production on wastewater
 - "I need to dump this tank to prepare it for the next batch."
 - This can lead to potential regulatory ramifications.
- Communication between production and onsite WWTP staff is not optimal
 - "The influent COD spiked this morning. I wonder why."
 - Staff can effectively operate the WWTP
- Allows reevaluation of quantities of chemicals prepared versus needed for production
 - Deep dives into the process may uncover inefficient use of raw materials

Why develop a WLM?

- Regulatory authorities require wastewater characterization as part of permit applications
- WLMs can help:
 - prevent/decrease WWTP upsets
 - justify permit modifications
 - with wastewater treatment plant design

How do I develop a wastewater load model?

How do I develop a WLM?

Five Ws of... Reporting WLM Development

- Who is going to be the end user of the WLM?
- What chemicals are used (strength and volume)?
- Where in the process are chemicals used?
- When in the process are chemicals discharged?
- Why is a WLM being developed (e.g. permitting, design)?
- How are chemicals discharged (slug vs. gradual)?

Usability and functionality of a WLM is also critical

How do I develop a WLM?

- The development of a defensible WLM typically relies on the following:
 - Bill of Materials (BOM): Materials/chemicals used in process
 - Production Schedule
 - Interviews with the "boots on the ground"
 - Stakeholder input
 - Confirmatory Sampling

- The crux of the whole model ("recipe")
- Identifies chemicals used (ingredients)
 - Strength of chemicals
 - Volume of each chemical
- High level picture of when and how in the process they are used (instructions)

If outsourcing WLM development, an NDA is critical

Chemicals in BOM are converted to COC

- Uses basic chemistry
 - COD assumes complete oxidation of chemical
 - N and P based on stochiometric formula
- High level understanding of:
 - Alkalinity
 - Acidity
 - Total Dissolved Solids

- Goal is to estimate weight of COC per unit weight/volume of chemical
 - This value is theoretical!
 - Published data may be available
- Units are critical (M vs. mM vs. %)
- Don't forget about the heel!
 - BOM ≠ what is used in production
 - Heel dumping leads to slug doses

Okay...so what does that all mean?

Assume the following is in a BOM:

- 100 gallons of 10% Ethanol
 - Ethanol = C_2H_6O
 - MW = 46.1 g/mol; density = 6.58 lb/gal
 - What is the impact on COD?

Chemistry Alert!

Write oxidation reaction for ethanol

$$C_2H_6O + 3O_2 = 2CO_2 + 3H_2O$$

2. Determine theoretical COD for ethanol

$$ThCOD_{Ethanol} = \frac{3 \times (16 \times 2)}{46.1} = \frac{2.08gO_2}{g\ Ethanol}$$

3. Calculate COD Loading

$$lb\ of\ COD = \left(\frac{10}{100}\right) \times 2.08 \times \left(100gal \times 6.58 \frac{lb}{gal}\right) = \mathbf{137}\ \mathbf{lbs}\ \mathbf{COD}$$

A WLM does all this in the background.

Production Schedule

- Understanding which products are made and when
- Indicates how BOM is implemented
 - On which day a chemical is used, and how it is discharged (dumped vs. gradual)
 - Daily wastewater loading schedule
- Cleaning is important!
 - Cleaning chemicals typically alter pH
 - Hydraulic loading spikes
 - Need to know frequency and magnitude of cleaning

clipartix.com

Operator Interviews

- Allows user to understand what actually happens
 - They know the process better than anyone
- Learn about practices not formally documented, but necessary
- Understand level of communication between production and utilities

Stakeholder Input

- The eventual end-user
 - Usability and functionality need to be agreed upon
 - Determine if end-user intends on maintaining WLM
- Dictates the goal(s) of the WLM
 - Why the WLM is being developed
- Specifies the outputs
 - How should results be presented?
 - Factor of safety

richestsoft.com

Confirmatory Sampling

- Opportunity to validate/calibrate WLM
 - Provides defensibility to WLM
- Minimizes/confirms assumptions
- Samples should be collected:
 - At each process step
 - At influent to WWTP (onsite)
 - For each COC
- Verify hydraulic loading with flow meters
 - May need to develop Water Balance

Considerations when developing a Wastewater Load Model

WLM Considerations

- End-users version of MS Excel
 - Backwards compatibility (e.g. concat vs. concatenate)
 - Avoid macros, if possible.
- Who will perform edits/maintenance on WLM?
 - User Excel proficiency varies
 - Logic/formulas should be easily understood
- User Interface
 - What will be the user inputs (e.g. permit limits, units)?
 - Can certain WLM components be toggled OFF?

WLM Considerations

- Visual feedback
 - Overall layout and look of WLM
 - Conditional formatting to highlight threshold exceedances
- Workbook Security
 - Version control
- Think long-term
 - Link cells (carefully) to promote universal changes
 - Build a common database that feeds info to everything else
- Instructions
 - Users need guidance on how to navigate WLM
 - If user training takes >1hr, WLM is too complicated (usage only)

Do WLMs work?

Background

- Manufacturers various products for use in laboratory and pharmaceutical sectors
- Recently installed new equalization tank to feed underdesigned onsite wastewater treatment plant
- Production increased faster than anticipated causing issues balancing organic and hydraulic loading
 - Frequent effluent limit encroachments and exceedances
- Poor communication between production and WWTP Operator
 - Operated reactively instead of proactively
 - Frequently contracted waste hauler to remove wastewater

Client Request

- Client requested WLM that would provide/allow:
 - A simple, easy way to track COD
 - A daily schedule layout
 - User to select process and product being operated that day
 - User to enter current IWWTP information (e.g. feed rate, EQT level, influent COD concentration)
 - Projections for COD loading and EQT water level

Product

- Arcadis developed:
 - A chemical library, equating all raw materials to COD
 - A matrix of all processes (3) and products (~30) that the Tool used as an index
 - Daily calendar with dropdowns for process and product
 - Conditional formatting (green, yellow, red) to alert user of potential issues
 - User interface to select formatting thresholds

Results

- Improved communication between production and WWTP staff
 - 2-week schedule inputted into WLM to determine potential issues
 - If found, production would adjust schedule
- WLM daily projections allowed operator to adjust feed rates to avoid organic/hydraulic bottlenecks
- Significantly reduced need for waste haulers
- WLM was simple and required minimal training
 - Instructions fit on a single page

Background

- Client site major location for manufacturing of its flagship product
- Demand required increase in production
 - Existing effluent limits were prohibitory
 - Existing onsite WWTP was inadequate
- Impact of practices in production were not understood (e.g. heel dumps)
- Client requested predictive WLM to aid it in making future capital improvements
- Client entered an agreement with local regulator in effort to increase permit limits
 - Part of agreement was to develop WLM

Client Request

- Client requested:
 - A fluid, comprehensive WLM for:

COD	TN	TDS	Alkalinity
BOD	TP	Acidity	Flow

- A multi-month lookahead schedule
- A user interface to modify WLM assumptions
- Ability to scale up/down production in the WLM

Product

- Arcadis developed:
 - Library of nearly 60 chemicals, equating all raw materials to the COC
 - Detailed matrix of vessel cleaning and raw material usage
 - 200-day lookahead
 - "Live" graphical representations of results
 - Expanded user interface to allow use to change:
 - Units of measure
 - Production length
 - Safety factors
 - Particular chemical usage

Results

- WLM successfully used to justify modification to client's permit
 - Higher flow and loading
- WLM used as basis for new onsite WWTP design
 - Regulatory approval of design largely predicated on WLM
 - WLM easily modified for client's other site to verify design of its WWTP
- Site-wide notification conducted alerting staff of impact of chemical dumping
 - Decreased significantly

Wrap-up

- WLMs convert BOM and production schedules into wastewater loading schedules
- WLMs can be a reliable tool in predicting/projecting wastewater characteristics
- With proper validation, can be used to:
 - justify requests for permit modifications
 - supplement a basis of design
- WLMs help increase education and communication among staff with respect to wastewater
- WLMs are flexible, intuitive, and can be built with a level of complexity suitable to an end-users comfort level

Thank you!

ALEX J. SANTOSProject Chemical Engineer

- 914-641-2805
- c 917-301-2259
- e Alex.Santos@arcadis.com

© Arcadis 2017 5 February 2018 35