

Approaching Energy Neutrality With Carbon Diversion

Jared Alder Sergio Pino-Jelcic NEBRA Conference October 26, 2017

WW contains nearly 5 times the energy needed to treat it. WW sector spends ~\$2.2B per year in electricity.

Source: American Biogas Council

Distribution of Energy Usage for Typical WWTP

- Aeration energy is more than 50% of WWTP energy
- Most organics/carbon aerobically oxidized
- Need aeration volume for BOD removal

Carbon Diversion

Primary Treatment Technologies

PRIMARY TREATMENT	BOD FRACTION REMOVED	REMOVAL MECHANISM
Conventional Primary Clarification	✓ Particulate/settleable	Sedimentation.
Chemically Enhanced Primary Clarification	✓ Particulate/settleable✓ Colloidal	Sedimentation with chemical coagulation and flocculation.
Mechanically Enhanced Microscreens & Filters	 ✓ Particulate larger than filtering media 	Physical barrier. Mechanical separation.
Biologically Enhanced "A" Stage of A/B Process	✓ Particulate✓ Colloidal✓ Soluble	Biosorption and sedimentation.
Biologically Enhanced Captivator®	✓ Particulate✓ Colloidal✓ Soluble	Biosorption and floatation.

Biosorption Mechanism

Captivator – Advanced Primary Treatment

Conventional Technologies – **Innovative** Configuration

Performance Comparison

	Primary Clarification	Captivator
BOD removal	25-30%	45-60%
TSS removal	45-55%	65-80%

Biologically Enhanced Primary Treatment

- ✓ Biosorption
- **Bioflocculation**

Contact Tank

- Short retention time. Small volume
- Mild and low intensity aeration
- Optimizes biosorption. Minimizes oxidation
- Preferable with Disc Aeration
- Options for other aeration/mixing equipment
- Can retrofit existing primary clarifiers (rectangular and circular)

Why DAF for Solids-Liquid Separation?

Hydraulically efficient

- **5X** smaller footprint than primary clarifiers
- Hydraulic loading: 5,000 gpd/ft2 @ ADF
- Rapid transport of solids to digester

Thickener (coflotation)

- 4-6% solids without chemical
- NO need for additional thickeners

Removes settleable solids

Less grit to digesters

Impacts on Downstream **Processes**

Impact on Aeration Basins

Less BOD/TSS to Activated Sludge

- Less aeration energy
- Less MLSS = less solids load for clarifiers or membranes
- Smaller aeration basin
- Free up bioreactor volume
- Design considerations for denitrification and bio-P
- Less WAS generation

Impact on Anaerobic Digesters

More raw BOD to digestion

- Less WAS to digester
- More biogas
- More VS destruction

Less grit

- More "useable" volume
- Fewer cleanings

Impact on Sludge Thickening

Captivator delivers 4-6% thickened solids

No sludge thickeners required

No polymers needed

Captivator Development – Case study

Bethlehem, PA pilot

- Proved primary FF DAF
- WAS enhanced DAF performance
- Observed soluble BOD removal

Singapore R&D study

- Side-by-side program
- COD balance
- Proved enhanced BOD/TSS removal
- Proved biogas increase

COD balance Singapore pilot Baseline system

COD	Baseline System	Captivator System
Oxidized	39%	17%
Biogas	23%	38%

Captivator® Process WAS 15.5% Oxidized Oxidized 15.2% Final Effluent Inflow 42.4% A.T. 11.7% 100% DAF Sludge 71.2% 38.0% Biogas Excess Sludge

COD balance Singapore pilot Captivator system

Agua Nueva WRF (Pima County, AZ) - 32 MGD

- Award winning DBO commissioned in December 2013.
- Evoqua integrated Captivator, clarifiers and disc filters.
- Captivator selected because of the benefits of reducing primary treatment footprint, aeration volume, aeration energy, and eliminating sludge thickeners.

Captivator System

Source: CH2M

Agua Nueva WRF – Performance

	Captivator
Soluble BOD removal	29%
Total BOD removal	50%
TSS removal	66%

Source: CH2M

- Captivator system footprint = 126 ft x 190 ft.
- 65% footprint reduction compared to primary clarifier alternative.
- 35% reduction in aeration volume, 30% less diffusers, 30% smaller blowers.
- No separate sludge thickeners

Agua Nueva WRF

Soluble BOD loads through CAPTIVATOR

Application Criteria

Must have

Waste activated sludge (suspended growth) – existing or future.

Nice to have

- Anaerobic digesters existing or future
- Energy recovery (Cogen, sludge drying) existing or future

Good Candidates

- Plant expansions or upgrades (more flow, load, SRT in existing tanks)
- Conversion of fixed-film (RBC/TF) or HPO plants to activated sludge
- High BOD loading (industrial F&B)
- Plants with primaries existing or future
- Plants with beneficial use of biogas
- Footprint limited
- High energy costs

Captivator Demonstration & Pilot Program

0.3-MGD Captivator Pilot Unit

Captivator Pilot – BMP test

Bench Tests

Contact Tank Simulation

Pressurized System

DAF Simulation

TAKEAWAYS

- Biologically Enhanced Primary Treatment carbon diversion.
- Enhanced BOD/TSS removal combined with sludge thickening.
- Shift carbon balance from "consuming" to "producing".
 Less aeration and More biogas.
- Expansions in existing tanks. Free-up bioreactor volume.
- Small footprint. Can use existing tanks.
- Conventional technologies with innovative configuration.

THANKS FOR YOUR ATTENTION

Jared Alder 480-202-1168 jared.alder@evoqua.com

Sergio Pino-Jelcic 262-521-8253 sergio.pinojelcic@evoqua.com