

Carbon Considerations in Biosolids Management

October 27th, 2017

District of Columbia Water and Sewer Authority

Why did we build the model?

Started as an effort to see how different aspects of the biosolids management program affected carbon emissions, and evolved into a tool that measures the entire DC Water carbon footprint to:

- measure improvements in carbon footprint
- show farmers the benefits of land application
- •set a precedent for models to include land application of biosolids
- measure how future projects will affect our footprint
- use in negotiations next time we are asked to cut our nitrogen loads to the Potomac
 - EPA Air and EPA Water need to discuss conflicting goals
 - Could lead to discussions of watershed approaches to N management

How did we build the model?

- Leveraged capital money from our ENR project
 - rationalized it by stating that we would measure impact of the process on CO₂e emissions
 - and use it in negotiations next time
- Worked with Brown & Caldwell (John Willis) to develop the model
- Based loosely on IPCC model, with some extras
 - land application of biosolids
 - measured CH₄ at plant and in sewers
 - •Methanol CO₂ release in nit/denit

DC Water is modeling carbon balance for base year, current year, and future projects

	Annual Emissions Estimate	Scope 1 and 2	
Emission Source	Metric Tons CO2e	Percent Contribution	
Scope 2			
Electricity	146,920	88%	
DSS	11,053	7%	
DWS	9,163	5%	
DWT	126,704	76%	
Scope 1			
Natural Gas	2,967	2%	
CS	197	0.1%	
DSS	371	0.2%	
DWS	441	0.3%	
DWT	1,924	1%	
FLEET	34	0.02%	
Vehicle (fuel usage)	2,586	2%	
Compressed Natural Gas (CNG)	0.064	0.00004%	
Diesel Fuel No. 1 and 2	1041	0.6%	
Motor Gasoline	1545	0.9%	
Refrigerants	142	0.08%	
Nitrification/Denitrification (process emissions)			
CO2 from Addition of Methanol	12,007	7%	
N2O from Dentrification	443	0.3%	
Effluent Discharge (process emissions)	2,009	1%	
Total with Scope 1 and 2	167,074		
Scope 3			
Biosolids Hauling (fuel usage/distance travelled)	4,107		
Chemical Hauling (distance travelled)	1,450		
Lime Production	14,883		
Methanol Production	6,747		
N2O Emissions from Land Application of Biosolids	52,548		
Methane Emissions from Landfilling Biosolids	7		
Total with Scope 3	246,815		
Carbon Credits			
Carbon Sequestration Land Application	26,844		
Carbon Sequestration Land Application with Composting	13,576		
Carbon Sequestration Landfill	2		
Avoided N2O Emissions from Replacement of Inorganic Fertilizers	52,548		
Fertilizer Credits Direct Applied Biosolids (N and P)	9,006		
Fertilizer Credits Composted Biosolids (N and P)	1,692		
Total	103,668		
GRAND TOTAL	143,147		

Model breaks down emissions by department, type

Breakdown of Electricity Consumption Blue Plains

Process Schematic of DC Water's New Biosolids Program

Thermal Hydrolysis Process

<u>Pulper</u>

- Influent solids 15 to 18.5 %TS
- Preheated to 140-210°F with recycle steam
- Mixing pumps

Reactors

- Batch process
- Heated to 302-356°F
- 54-138 psi
- 22-30 minute detention time

Flash Tank

- Depressurization
- Cools down to 158-239°F
- 8-12 %TS to digesters

Program Benefits

Resource Recovery

Reduce biosolids quantities by more than 50%

Improve product quality (Class A and more)

Generate 10 MW of clean, renewable power

Cut GHG emissions dramatically

Save millions of dollars annually

Post digestion carbon footprint

Pros:

- •~58,000 MT CO₂e reduction
- •Reductions in:
 - Hauling
 - Polymer
 - Lime (eliminated)
- 10 MW green power produced

Cons:

 <biosolids so <C sequestered and fertilizer avoided

ammonia N, so >methanol and power for ENR

Digesters effect on carbon footprint

Emission Source	2007-2008 Average Annual Emissions Estimate, Metric Tons CO ₂ e	Projected Annual Emissions after Cambi Digestion Upgrades ⁴ , Metric Tons CO ₂ e	Reduction,
Scope 1			
Natural Gas	2,976	2,976	0
Vehicle (fuel usage)	2,788	2,788	0
Refrigerants	125	125	0
Nitrification/Denitrification (process emissions) ⁸	3,472	4,687	-1,215
Effluent Discharge (process emissions)	1,736	1,736	0
Total of Scope 1	11,096	12,312	-1,215
Scope 2			
Electricity ^C	0.0.40000	DI MANAGEMEN	
DSS	10,237	10,237	0
DWS	10,178	10,178	0
DWT ^{0,4,F}	133,387	85,356 +++	48,031
Total of Scope 2	153,802	105,771	48,031
Total of Scopes 1 and 2	164,898	118,083	46,816
Scope 3			
Biosolids Hauting (fuel usage/distance traveled) ⁶	4,154	1,853	+ 2,301
Lime Production	14,547	727	+ 13,819
Methanol Production®	7,187	9,676	-2,509
N2O Emissions from Land Application ^H	50,437	35,306 +	+ 15,131
Methane Emissions from Landfilling Biosolids	290	149	142
Scope 3 GHG Emission Offsets		110000	
Carbon Sequestration Land Application ^{8,5}	-28,886	-28,886	~
Carbon Sequestration Land Application with Composting ^{K*}	-12,837	-12,837	0
Carbon Sequestration Landfilf.*	-56	-56	0
N2O Offsets from Avoided Chemical Fertilizers	-50,437	-35,306	-(-15,131)
Fertilizer Credits Direct Applied Biosolids (N and P) ^H	-6,812	-4,768	-2,044
Fertilizer Credits Composted Biosolids (N and P) ^H	-1,054	-738	-316
Total Scope 3 Emission Offsets	-23,487	-34,880	11,393
GRAND TOTAL (Scopes 1, 2, and 3 reduced by identified Scope 3 GHG Emission Offsets)	141.412	83,203	58,209

Carbon footprint before, during, and after digester start-up

Power draw from the grid and onsite generation

Why is Methanol an "issue"?

- •We "assume" that CO₂ from aeration basins is **BIOGENIC**
- Methanol is made from Natural Gas (which is a fossil fuel)
- •So that CO₂ evolving from methanol addition is a Scope-1 GHG emission
- •Prior to ICLEI's US Community Protocol (2012) Method WW.9,

None of the protocols addressed this possibility

Sewer Heat Recovery Potential

- Stable daily temperatures (2°F cycle)
- Significant seasonal cycle (58°F 78°F)
- Significant variation site-to-site
- Weather has varying impact
- •For each 1 MGD, ~1 MW of thermal energy
- •200 MGD baseflow = 200 MW available
- Possibly "sweetspots"

Sewer Heat Recovery

Gateway TheatreUtility room supplies 50,000 ft²
building in Vancouver, BC

FALSE CREEK ENERGY CENTRE - How it works

Southeast False Creek

Providing 3 MW of heat energy to local neighborhood via hot water pipeline

Solar Project for Blue Plains

Offsite Solar Potential

FORT STANTON: 2.0-2.5 ACRES (500kW)

FORT RENO: 6.0-7.8 ACRES (1 MW+)

BRENTWOOD RESERVOIR: 2.0-2.75 ACRES (500kW+)

Co-digestion model – sewage solids with food waste

Potential Grid Power Draw Reductions

Overview of DC Water Collection System: Geography

 1,900 miles of Sewer are owned/operated by DC
 Water

 Over 500 miles are modelled, including the Potomac Interceptor

In 2014 (modeled year):
155mgd outside DC
151mgd within DC
306mgd total

Collection-System Methane Methodology uses Two Models

Gravity-Sewer Model:

$$r_{\text{CH4-GS}} = 0.419 \times 1.06^{(T-20)} \times Q^{0.26} \times D^{0.28} \times S^{-0.135}$$

= CH₄ emission rate in kg Cd verified under the = Tempera Developed and verified under the s DC Water/WERF Project $r_{\rm CH4}$,

= Flow in m

= Pipe diameter in m

= Slope in m/m

•Forcemain/Surcharged-Sewer previously $r_{\text{CH4-FM}} = 3.452$ verified previously verified verified verified verified verified verified verified

Relative Significance of each Emissions Source (as %)

Description	2014 BP GHG Emissions Inventory withOUT Sewer CH ₄ , MT CO ₂ e/yr	2014 BP GHG Emissions Inventory WITH Sewer CH ₄ , MT CO ₂ e/yr	Percentage of Scope-1 Emissions by Source	Percentage of Scopes-1 and -2 Emissions by Source
	Scop	e 1		
Natural Gas	2,369	2,369	6.4%	1.5%
Vehicle Fuel	1,581	1,581	4.3%	1.0%
Refrigerants	0	0	0.0%	0.0%
CO ₂ from Addition of Methanol	16,953	16,953	45.6%	11.0%
Process N ₂ O	798	798	2.1%	0.5%
Effluent Discharge N ₂ O	2,690	2,690	7.2%	1.7%
Sewer CH ₄	0	12,793	34.4%	8.3%
Total Scope 1:	24,389	37,183	100.0%	24.1%
	Scop	e 2		
Total Scope 2:	117,174	117,174	NA	75.9%
	Totals of Sco	pes 1 and 2	· · · · · ·	
Total Scopes 1 and 2:	141,563	154,356	NA	100.0%

EIA Data for US National GHG Emissions

Develope d according to IPCC, 2006

US Domestic WW GHG Emissions by %

By Source: million MT CO2e/yr, % of Domestic WW Total

Conclusions

- Biosolids programs can have a significant, positive effect on a resource recovery facility carbon footprint
- Tracking our carbon footprint can help develop tools to make wise changes within our processes and practices
- •Methanol use and sewer methane emissions are potentially big contributors to our footprint, but overall are a very small percentage of the US CO₂e emissions
- •We should strive toward acceptance of land app in national and international models

