Phosphorus in Compost and Risks to Water Quality

Geoffrey Kuter, Mike Carignan, and Dave Harding Agresource Inc.

MANAGING RESIDUALS IN A COMPLEX WORLD The Northeast Residuals & Biosolids Conference Burlington VT October 27, 2017

Phosphorus and Water Quality

- A very real problem for US waters
- Triggers growth of cyanobacteria (Blue Green Algae)
- Can be caused by:
 - Agricultural application of manure and fertilizer
 - Waste water treatment and septic systems
 - Lawn fertilizers
 - Storm water runoff

Compost Contains Phosphorus

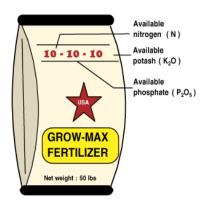
- Compost when applied based on Plant Available N, can result in "excessive" applications of Phosphorus
- Unlike chemical based fertilizers, Phosphorus cannot easily be removed from composts (and other organic based products)
- Composts are being regulated under state regulations intended for "Phosphorus containing fertilizers"

Compost

Part of the problem?

or

Part of the solution?


How can we use compost without risk to Phosphorus contamination of water?

How much Phosphorus is in Compost?

- •Total Phosphorus?
- Phosphorus as P or as P2O5?
- Water Soluble (Water Extractable Phosphorus)?
- Plant Available Phosphorus?

Compost Testing

	Total P	P2O5	Total P
Feedstocks	% dw	% dw	ppm dw
Leaf/yard wastes	0.15	0.34	1,485
leaf/yard wastes	0.18	0.42	1,830
leaf/yard wastes/food	0.18	0.42	1,817
leaf/yard wastes/food	0.19	0.43	1,873
Biosolids/wood chips	0.34	0.78	3,424
Biosolids/wood chips/Yard wastes	0.35	0.81	3,537
Biosolids/wood chips	0.70	1.60	6,991
Biosolids/Yard wastes/WTR	0.73	1.67	7,293
Biosolids/wood chips	0.82	1.87	8,183
Yard wastes/Gelatin residuals	0.96	2.19	9,581
Biosolids/wood shavings	1.05	2.41	10,524
Biosolids/wood chips	1.59	3.65	15,939

Water Soluble Phosphorus (Water Extractabla)

Feedstocks	WEP ppm dw	% of total P
leaf/yard wastes	122.8	7.0%
leaf/yard wastes	124.6	8.4%
leaf/yard wastes/food	134.0	7.4%
leaf/yard wastes/food	126.9	6.8%
Biosolids/wood chips	703.0	20.5%
Biosolids/wood chips/Yard wastes	430.5	12.2%
Biosolids/wood chips	1,559.1	22.3%
Biosolids/Yard wastes/WTR	336.5	4.6%
Biosolids/wood chips	633.7	7.7%
Yard wastes/Gelatin residuals	195.4	2.0%
Biosolids/wood shavings	1,397.8	13.3%
Biosolids/wood chips	287.30	1.8%

Phosphorus per Cubic Yard

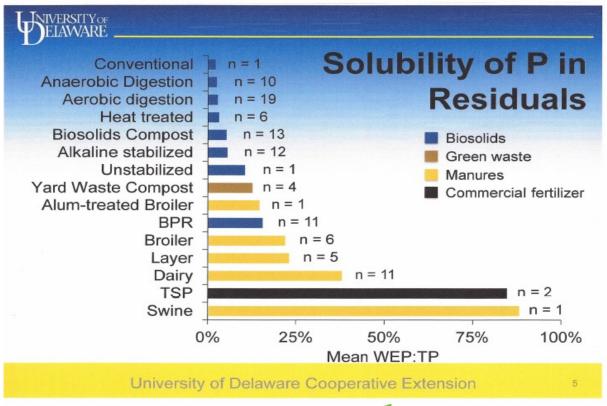
	P2O5	WEP
Feedstocks	lbs/cy	lbs P205/cy
leaf/yard wastes	1.4	0.16
leaf/yard wastes	2.4	0.12
leaf/yard wastes/food	2.6	0.19
leaf/yard wastes/food	3.0	0.21
Biosolids/wood chips	3.0	0.60
Biosolids/wood chips/Yard wastes	5.5	0.66
Biosolids/wood chips	5.4	1.21
Biosolids/Yard wastes/WTR	7.3	0.37
Biosolids/wood chips	7.3	0.57
leaf/yard wastes/Gelatin residuals	10.7	0.23
Biosolids/wood shavings	9.5	1.38
Biosolids/wood chips	13.9	0.25

Phosphorus per lb. OM

	P2O5	WEP
Feedstocks	lbs/100 lb OM	lbs P205/1,000 lb OM
leaf/yard wastes	0.8	0.64
leaf/yard wastes	1.3	0.86
leaf/yard wastes/food	1.2	0.87
leaf/yard wastes/food	1.5	1.05
Biosolids/wood chips	0.9	1.83
Biosolids/wood chips/Yard wastes	1.3	1.53
Biosolids/wood chips	2.0	4.35
Biosolids/Yard wastes/WTR	3.2	1.31
Biosolids/wood chips	2.3	1.79
leaf/yard wastes/Gelatin residuals	6.3	1.26
Biosolids/wood shavings	3.2	4.26
Biosolids/wood chips	5.5	0.98

WEP; Fe, Al, and Ca Relationships

	WEP	Al	Fe	Al+ Fe	Ca
Feedstocks	% of total P	ppm dw	ppm dw	ppm dw	ppm dw
Biosolids/wood chips	1.8%	21,864	10,564	32,428	19,500
leaf/yard wastes/Gelatin residuals	2.0%	5,119	8,835	13,954	114,000
Biosolids/Yard wastes/WTR	4.6%	17,090	9,245	26,335	18,600
leaf/yard wastes/food	6.8%	7,614	13,983	21,597	14,400
leaf/yard wastes	7.0%	7,883	10,026	19,083	11,200
leaf/yard wastes/food	7.4%	5,533	7,966	13,499	14,000
Biosolids/wood chips	7.7%	2,489	8,152	10,641	17,000
leaf/yard wastes	8.4%	5,037	8,503	13,540	18,600
Biosolids/wood chips/Yard wastes	12.2%	5,550	10,245	15,795	9,700
Biosolids/wood shavings	13.3%	3,835	10,494	14,328	7,900
Biosolids/wood chips	20.5%	3,101	13,600	16,701	3,500
Biosolids/wood chips	22.3%	1,955	4,894	6,849	13,500


Biosolids Treatment Effects

	total P	WEP	WEP
Biosolids treatment	ppm dw	ppm dw	% of total P
No P removal	3,424	703	20.5%
No P removal	3,537	431	12.2%
No P removal	6,991	1,559	22.3%
AD/No P removal	8,183	634	7.7%
Biological P removal	10.524	1.398	13.3%
	Ì		1.8%
	No P removal No P removal No P removal	Biosolids treatmentppm dwNo P removal3,424No P removal3,537No P removal6,991AD/No P removal8,183Biological P removal10,524	Biosolids treatmentppm dwppm dwNo P removal3,424703No P removal3,537431No P removal6,9911,559AD/No P removal8,183634Biological P removal10,5241,398

Comparison with other materials

Amv Shober Univ. of Delaware

How do Composts compare with "Fertilizers"?

It depends on the test methods that are used

- When WEP is tested, fertilizers (e.g. TSP) have high % WEP (about 85%) in comparison with composts (2 to 20%).
- When composts were tested using methods used to determine plant available Phosphorus in fertilizers (Neutral Sodium Citrate extraction) 100 % of the total Phosphorus in the compost was extracted.

Is the Phosphorus in Compost Plant Available?

- 100 % of WEP is potentially plant available
- Availability will depend upon reactions in soil i.e. binding with Fe, Al, Ca and soil pH
- When compost is tested with methods to determine plant available P in soil (i.e. Mehlich-3) results show 5% to 44 % of total P is extracted

Soil Testing Guidance

- Soil testing methods are used to address plant availability; e.g. response to added Phosphorus
- Soil tests are, by themselves, poor predictors of how much Phosphorus will be lost through either leaching or run-off
- Phosphorus Saturation Index (PSI) is a better predictor of leaching of Phosphorus from soil than conventional soil tests

PSI= P (mol) /Fe (mol) + AI (mol)
Oxalate or Mehlich-3 extraction

- If PSI is low enough (<0.1) soluble P maybe absorbed and retained
- Addition of Water Treatment Residuals high in Al and Fe can reduce PSI and reduce leaching of P
- PSI however may <u>not</u> be applicable to P bound with Ca or calcareous soils

What are risks to water?

Studies with composts are limited

- Composts can reduce P lost in runoff through changes to soil properties that result in increased infiltration (Spargo et al. 2006. *J. Environ. Qual.* 35:2342–2351.)
- Application of dairy manure composts to turf show no increased loss of P (Johnson et al. 2006. Soil Sci. Soc. Am. J. 70:2114-2121) from runoff and no increased P in soil below root zone (compared to no compost).
- Study with dairy, swine composts (Easton and Petrovic 2004. *J. Environ. Qual.* 33:645–655). Most leaching and runoff in 1st year; highest with composts. No significant difference in P leaching in 2nd year (compared with fertilizers).
- Bare soil results in greatest losses of P (primarily through run-off)

What are risks to water?

Maintaining dense vegetative growth reduces loss of nutrients due to

runoff

- Rapid establishment of vegetative cover prevents loss of nutrients
- Using compost to reduce compaction and improve infiltration reduces soil and nutrient losses from runoff
- Leaching losses will depend on type of compost and soil characteristics

Summary Guidance

- Compost amendments are effective in improving soil properties which reduce runoff, loss of soil, and P in runoff
- Compost should be used to raise levels of soil organic matter (SOM)
- Composts will increase levels of soil P and thus the potential for leaching of P particularly in sandy soils
- Leaching is highly dependent on soil chemistry and measurements of WEP and Phosphorus Saturation Index and should be used to evaluate risk (not total P in compost)
- Repeated applications of compost to provide nutrients may not be justified where P losses are of concern

Summary Guidance

0	Soil Test Results for Phophorus
% Soil	Below Optimum Above Optimum
<u>Organic</u>	- +
Matter Low -	Use compost to reach adequate Organic Matter Consider site risk factors use Low P composts Reduce fertilizer based on compost nutrient levels
Adequate +	Stop compost applications Use fertilizers Eliminate fertilizer based on soil test

Thank you to:

- John Spargo, Penn State University Soil Testing lab
- Ron Alexander, R. Alexander Associates, Inc.
- Bruce Hoskins and Suzanne Perron, U Maine Soil Testing lab
- Compost Facilities:

Ipswich MA	Merrimack NH	Needham MA
Fairfield CT	Hoosac WQD	Hidden Acres Farm
Bristol RI	Dartmouth MA	Southbridge MA

