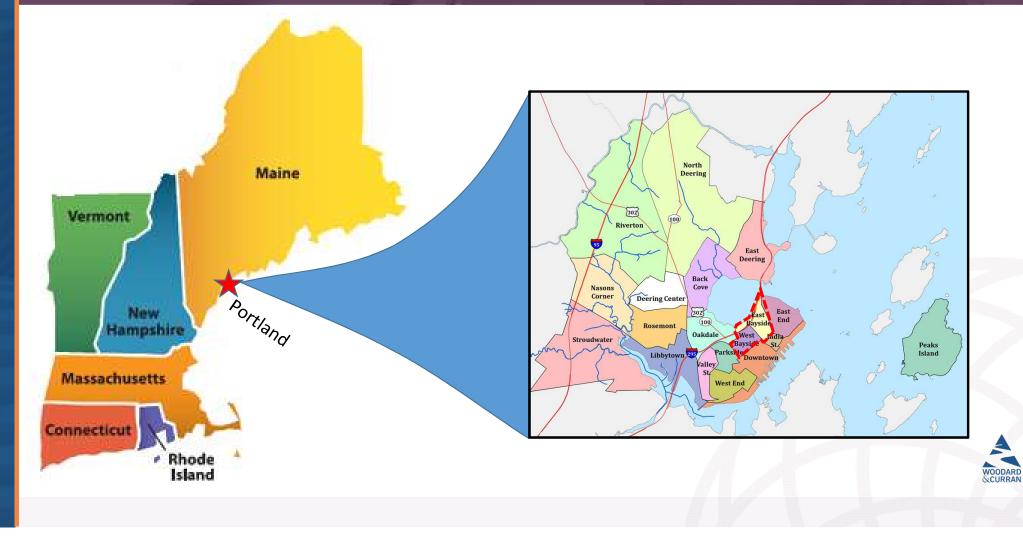


July 12, 2017 **Creating Resilient Infrastructure & Watershed Specialty Conference**

Troy Moon, Sustainability Coordinator Portland, Maine

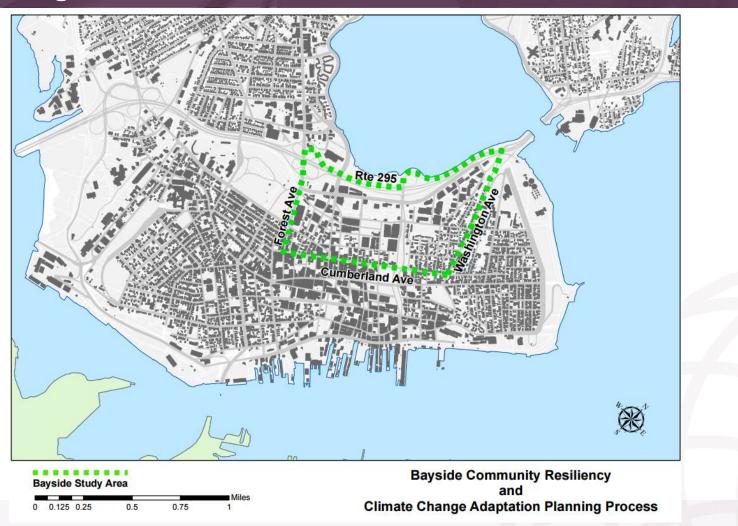
> David Senus, Project Manager Woodard & Curran, Inc.



Step 0: How Portland Maine Is Working to Protect a Low-lying Neighborhood

Portland, Maine

Portland, Maine



Portland, Maine

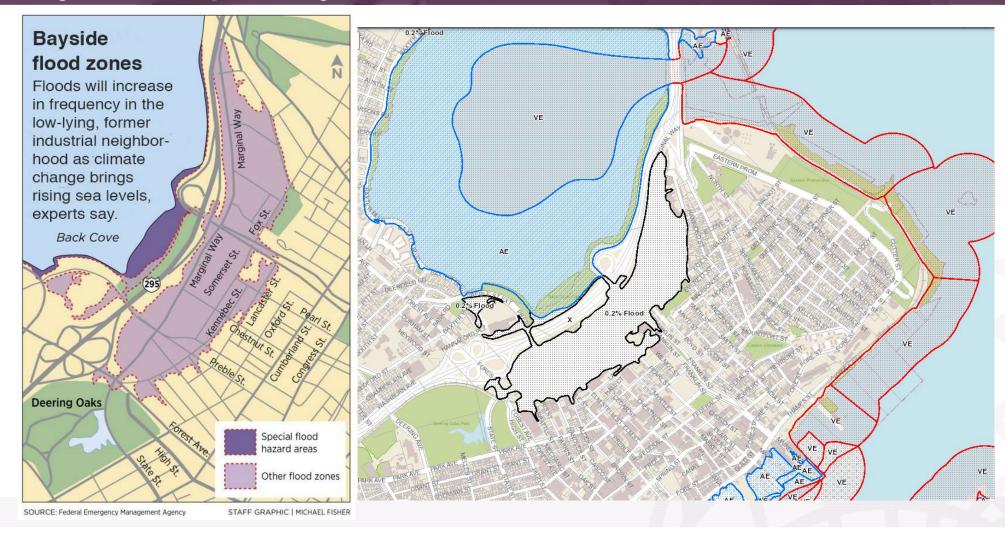
- 69.4 square miles
- Population is almost 70,000 | 200,000 during the day
- Portion of City on a peninsula in Casco Bay/Atlantic Ocean
- 19 neighborhoods
- Busy summertime activity

Bayside Neighborhood

WOODARD &CURRAN

Bayside Neighborhood

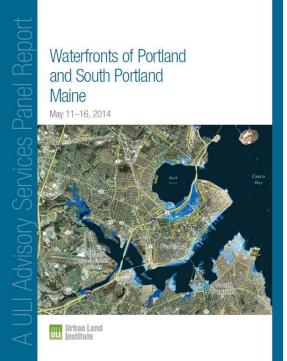
- Minutes from downtown Portland, the beach, the working waterfront and Back Cove
- Historically home to warehouses, scrapyards, manufacturing, small businesses, and generational families
- Today, a mix of families and singles, young and old, immigrants and Mainers, old and new development, social services, businesses, offices, light industrial
- Most diverse Census Tracts in Maine

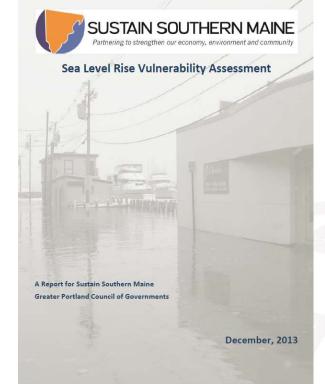

Bayside Neighborhood

- Most of Bayside today was in a section of Back Cove filled with debris from the Great Fire of 1866 — which burned most of the Old Port.
- More fill was added in the 1960s to build Interstate 295.

Bayside Adapts Project Area

Great Resiliency Foundation




The City of Portland

MUNICIPAL CLIMATE ACTION PLAN

Prepared by the Portland Municipal Climate Change Working Group

March, 2008

WOODARD

Pubic Engagement Process

<u>Bayside Area Working Group (BAWG)</u>

New England Environmental Finance Center and the City identified and recruited representative members of the BAWG:

- Residents
- Business owners
- Neighborhood organization members
- Non-profits

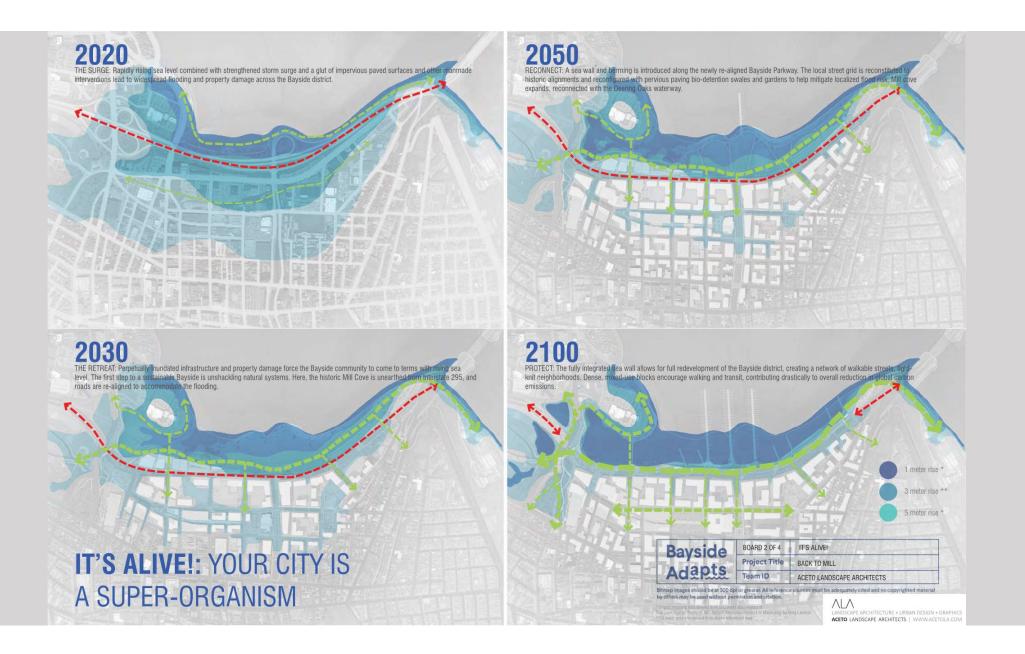
Pubic Engagement Process

Focused discussion topics of BAWG meetings (which were open to the public):

- Basic Information/Process
- Bayside Conditions & What Other Cities Are Doing
- Information Needs for Resiliency Planning
- Drafting Bayside Adaptation Principles

Pubic Engagement Process

Produce a Final Report from BAWG to City of Portland to report on adaptation principles identified during public engagement process including areas of convergent and divergent input


Bayside Adapts

DESIGN CHALLENGE PORTLAND, MAINE FEBRUARY-MAY 2017 Portland's Bayside neighborhood faces an uncertain future with rising levels of water. How should we as a community respond? Join us to view the conceptual design proposals in response to this challenge.

DESIGN CHALLENGE EVENT May 3, 2017 Portland Public Library, Rines Auditorium

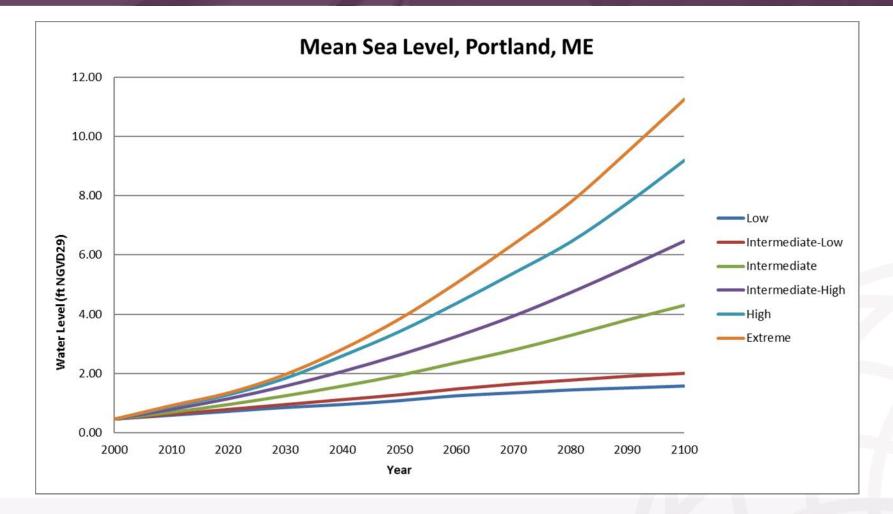
4:30-6:00PM Public viewing of submissions 6:00-7:15PM Speaker & public discussion Julie Wormser, Boston Harbor Now 7:15-7:45PM Presentation of awards

Data Gaps – What We Know / What We Don't Know

- Identify the <u>data gaps</u> and the <u>means of closing those data gaps</u> to allow the City to analyze flooding caused by rainfall, tides, surge, and sea level rise
 - Define planning scenarios for sea level rise / storm surge / storm events
 - Review the City's sewer and stormwater system to ID gaps
 - Contribute to / learn from public engagement
 - Provide recommendations / budgets for closing the data gaps

Climate Uncertainty & Scenario Based Planning

- Guiding principles
 - What is most likely to occur?
 - How bad can things get?
- Using these principles
 - What scenarios should Portland commit to managing?
 - What scenarios should they plan to manage?
 - What (low probably/high consequence) scenarios should the group be aware of?

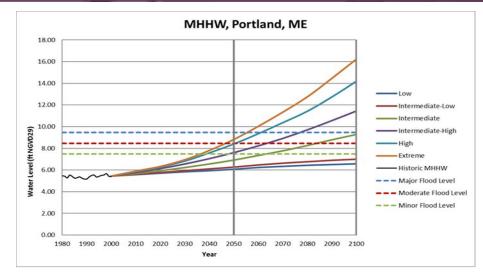


Defining Local SLR Planning Scenarios

- Commit to Manage
 Intermediate
- Prepare to Manage
 - 2050 Extreme
 - 2100 High
- Be aware of and monitor for
 - 2100: Extreme (low probability, high consequence)

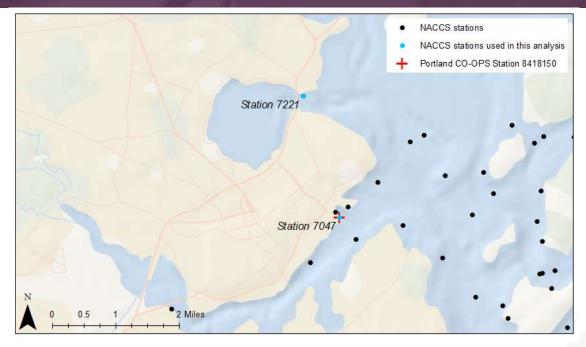
Defining Local SLR Planning Scenarios

WOODARD &CURRAN


Defining Local SLR Planning Scenarios

	2050			2100		
	Scenario	RSL (ft)	MHHW, ft NGVD29	Scenario	RSL (ft)	MHHW, ft NGVD29
Commit to Manage	Intermediate	1.5	6.93	Intermediate	3.8	9.3
Prepare to Manage	Extreme	3.4	8.8	High	8.8	14.2
Be Aware of	n/a	n/a	n/a	Extreme	10.8	16.2

- NWS Minor Flood Threshold: 7.5 ft NGVD29
- NWS Moderate Flood Threshold: 8.5 ft NGVD29
- NWS Major Flood Threshold: 9.5 ft NGVD29
- Blizzard of '78: 9.6 ft NGVD29


Impacts of Local SLR Scenarios

		Decade of Daily Exceedance			
NWS Threshold	Water Level (ft NGVD29)	Intermediate	Intermediate- High	High	Extreme
Minor Flooding	7.5	2060	2040	2030	2030
Moderate Flooding	8.5	2080	2060	2050	2040
Major Flooding	9.5	2100	2070	2060	2050

Storm Surge Scenarios

Location	100-Year Return Period Water Level (ft NGVD29)
NACCS Back Cove Station (Station 7221)	11.13
NACCS Maine State Pier Station (Station 7047)	9.32
Portland Tide Station (8418150)	9.53

Storm Surge Scenarios

10-year, 20-year, 100-year, and 500-year Water Levels

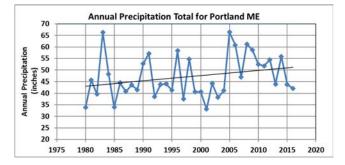
			Potential Storm	Potential Storm
		NACCS	Surge Water	Surge Water
NACCS	Water Level	Storm Surge	Levels above	Levels above
Station	Return Period	Water Level	MSL	MSL
		(ft NGVD29)	2050	2100
			(ft NGVD29)	(ft NGVD29)
7221	20-yr	9.13	10.66 - 12.57	13.03 - 19.98
Back Cove	100-yr	11.13	12.67 – 14.57	15.03 – 21.98

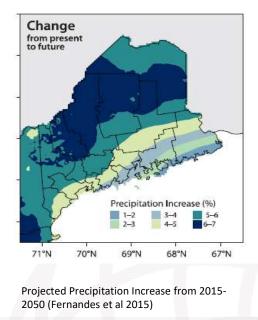
Storm Surge Scenarios

By 2050, today's 100-year water level

- Will occur > 5x as frequently (20-year storm) under the intermediate-high scenario
- Will occur > 10x as frequently (10-year storm) under the high and extreme scenarios

By 2100, today's 100-year water level


 Will occur > 10x as frequently (10-year storm) under all recommended scenarios



Precipitation: Climate Change

- Expected increase total annual precipitation
 - Present annual total average is 46.6 in (1985-2009)
 - Rate of increase is increasing
 - 0.0042 in/yr. from 1895-2014
 - 0.0349 in/yr. from 1960-2015
- CSNE Projected annual totals for various emissions scenarios and timeframes
 - Present study used an average of high/low emissions
 - Applied percentage to present day design storm totals

Representative Scenario	Range	Low Emission Annual Total Percent Change (%)	High Emission Annual Total Percent Change (%)	Average Percent Change (%)	Average Total Annual Precipitation (in)
2050	2040-2069	10.9	13.1	12	52.2
2100	2070-2099	13.7	20.8	17.3	54.7

Precipitation: Climate Change

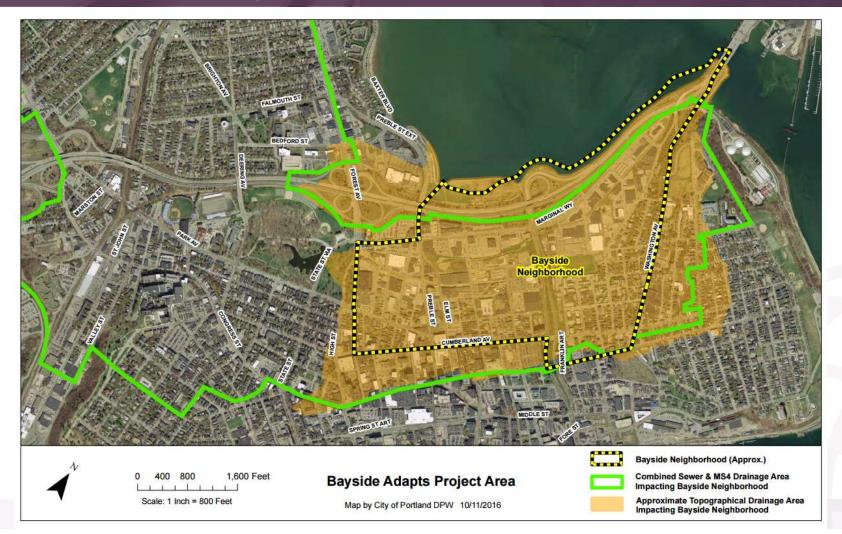
- Expected increased intensity
 - Derived using new design storm totals
- Expected increase in number of extreme events
 - Many sources site an increase in number of extreme events
 - this does not necessarily influence the degree of flooding
 - increases the number of times/days flooding may occur

Description	RI	Entire Event Duration	Historic	Mid Term (2050)	Long Term (2100)	
Total Precipitation (in)	25 yr.	24 hr.	6.19	6.93	7.26	
Peak 6-min Using NRCC- New (in/6 min)	25 yr.	24 hr.	0.61	0.68	0.71	
Peak Hourly - Using NRCC New (in/hr.)	25 yr.	24 hr.	2.02	2.26	2.37	

Infrastructure and Model Data Reviewed

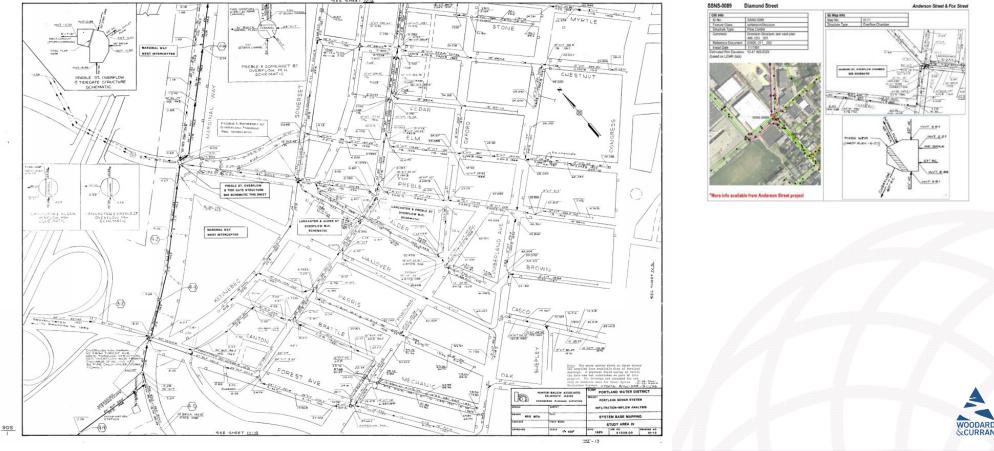
Dataset (Received from City)	Format	Date Received	Description
Stormwater and Sewer Infrastructure Data	GIS Geodatabase, Map Package	March 13, 2017	 Geographic and attribute information on sanitary sewer, combined sewer, and separate storm drain infrastructure Sewer and stormwater pipes recently inspected for structural and operational condition.
I&I Maps (Infiltration-Inflow Analysis maps)	PDF	2004	 1960's Infiltration-Inflow Analysis maps of Portland Sewer System Approximate geographic locations and connectivity of pipes and structures. Including invert elevations. Vertical datum: NGVD 29. Schematics of Special Structures in the drainage system
Surface Elevation Data (From 2015 LiDAR aerial survey)	Multiple: • GIS LiDAR (LAS) • GIS raster Digital Elevation Model (DEM)	March 28, 2017	 Detailed surface elevations for the entire Bayside area. Vertical datum: NGVD29
SWMM Model	ASCII	March 17, 2017	Hydraulic and hydrologic computer model of the sewer and combined sewer system servicing the Bayside

Other Data Reviewed:

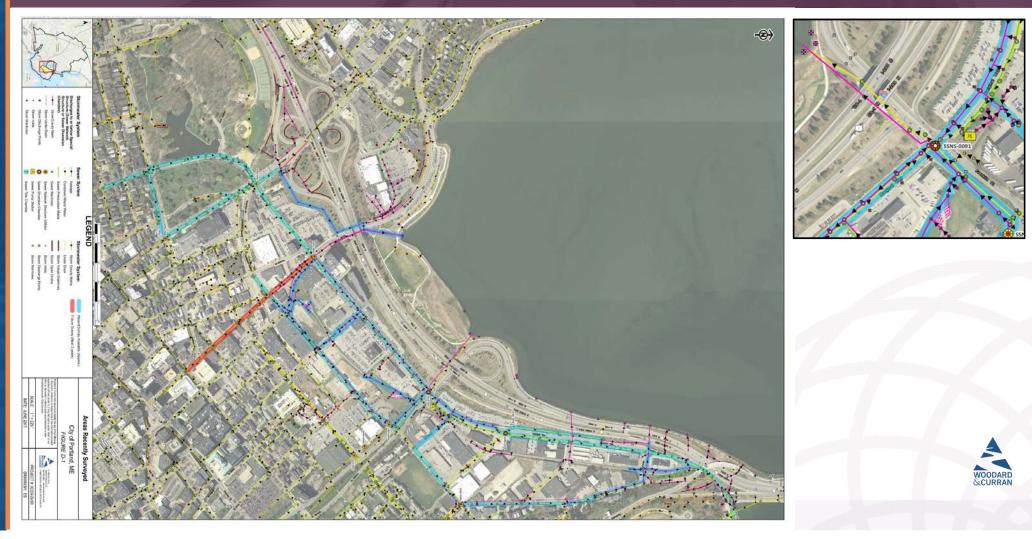

City's 2016 Flood Response Map

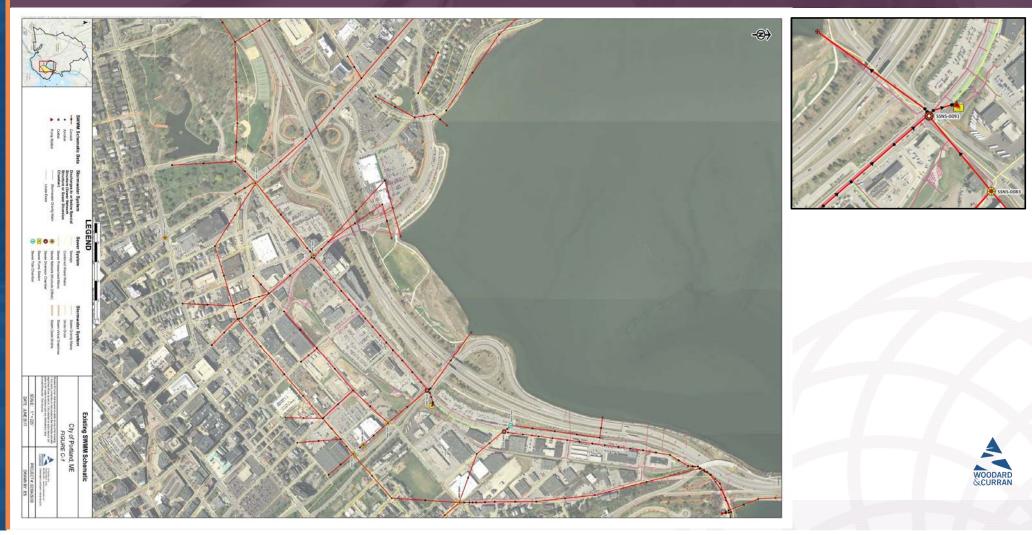
• Listing of flood event reports that occurred from 2013 to 2016

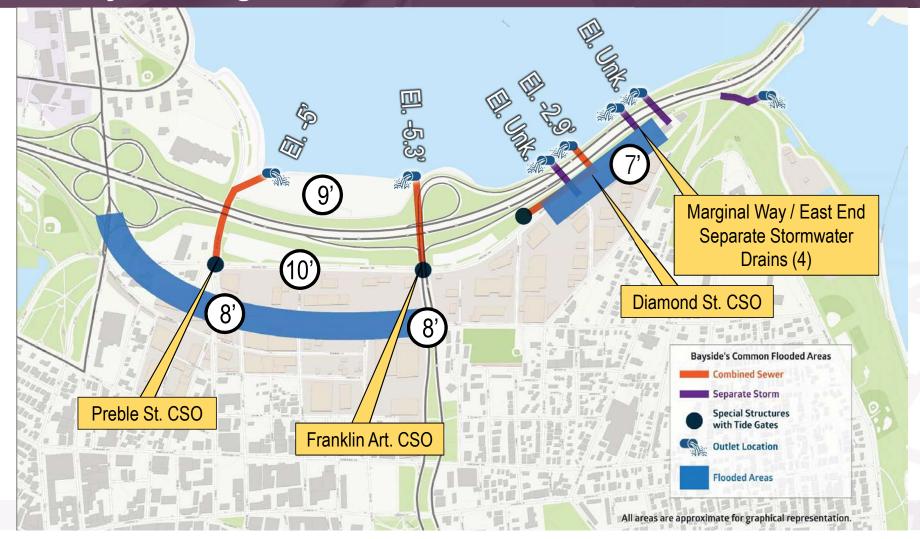
• Separation and Green Projects for the Back Cove South Storage Conduit, dated November 2014, and prepared by Wright-Pierce



Bayside Adapts Project Area




Infrastructure and Model Data Reviewed – I & I Map Data


Infrastructure and Model Data Reviewed – GIS Data

Infrastructure and Model Data Reviewed – SWMM Data

Primary Drainage Outfalls / Flooded Areas


WOODARD &CURRAN

Infrastructure Data Gaps

Data Gap	Description
GIS Database	 Ground survey data not integrated into the GIS Important attribute data not completely populated in the GIS (although largely available)
Surveys	Survey data does not exist for certain critical drainage infrastructure
Condition Assessments	Little to no condition information available for separate stormwater drainage
Condition, Form & Function of Special Structures	 Special Structures in the Bayside have not been recently assessed for condition and functionality.
Maine DOT Infrastructure	 Attribute data, condition and location of drainage infrastructure needs to be verified with input from DOT Collaboration and partnership between the City and DOT regarding maintenance and rehabilitation of drains that pass under I-295

Infrastructure Data Gaps

Model Data Gaps

Data Gap	Description
Model Components	 Model lacks separated storm drain systems in the Bayside that are likely to contribute to local flooding
	Source data is not documented in model on a point-by-point basis
Data Sources	Changes or updates to the model are not well documented in the model (by who, what and when)
Data Accuracy	 Special structure condition, form, and function outdated Incorrect structure elevations input to account for calibration needs
Model Calibration and Validation	Calibration and validation has focused on CSO's to date
Model Capabilities	 SWMM5 does not account for surface flooding evaluation but can be updated and integrated with other modules that can account for surface flooding.

Model Data Gaps

Infrastructure / Model Data Gap Recommendations

- 1. Compile and Extract Existing Data, Integrate into City GIS
- 2. Targeted Field Data Collection Program
- 3. Explore Additional Model Capabilities / Options for Adaptation Planning
- 4. Update / Calibrate / Validate Model(s)

Troy Moon | thm@portlandmaine.gov

David Senus, PE | dsenus@woodardcurran.com

Thank You! Questions?