The Risk of Not Being Resilient

Cate Fox-Lent

Risk and Decision Sciences Team Environmental Laboratory/ERDC 12 July 2017

Igor.Linkov@usace.army.mil

US Army Corps of Engineers.

HIGH

US Army Engineer Research and Development Center

2500 Employees

Over 1000 engineers and scientists 28% PhDs; 43 % MS degrees, \$1.3B Budget Annually

Research Laboratories of the Corps of Engineers

LaboratoriesField Offices

Cold Regions Research Engineering Laboratory (Hanover, NH)

Risk and Decision Science Team Boston, MA)

Topographic Engineering Center (Alexandria, VA)

Construction Engineering Research Laboratory (Champaign, IL)

Environmental Laboratory

Coastal & Hydraulics Laboratory Geotechnical & Structures Laboratory Information Technology Laboratory Headquarters (<u>Vicksburg, MS</u>)

Innovative solutions for a safer, better world

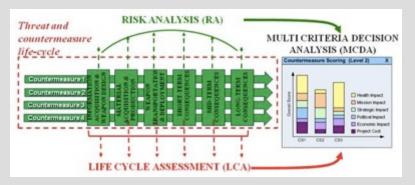
ERDC

BUILDING STRONG®

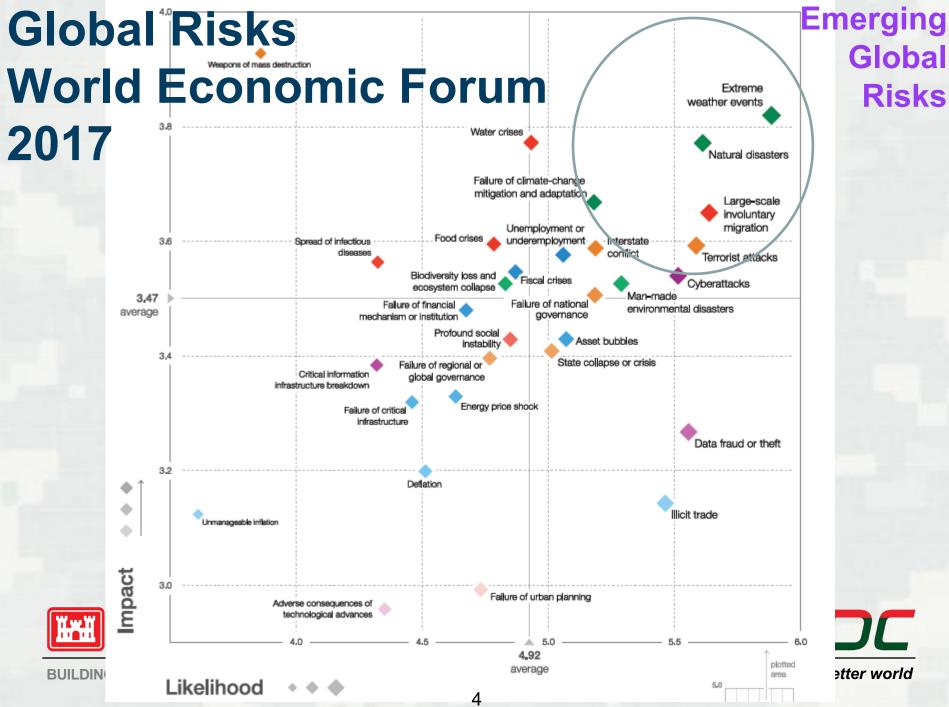
3

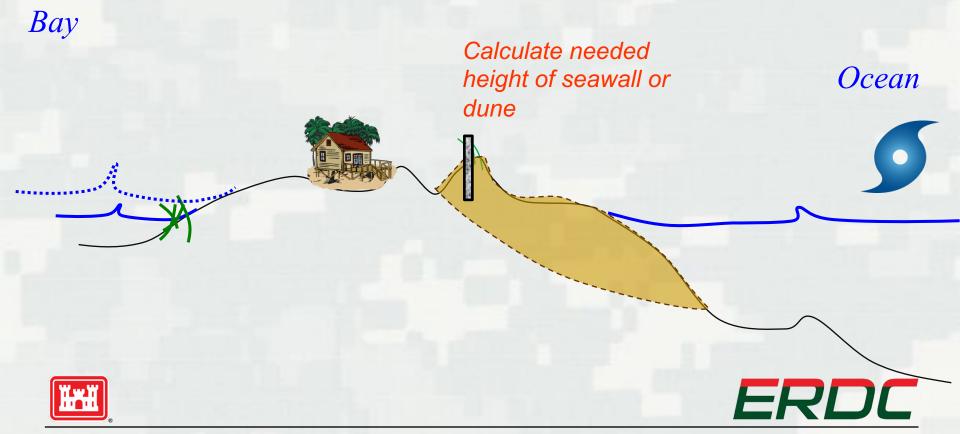
Risk and Decision Science Team

Capabilities

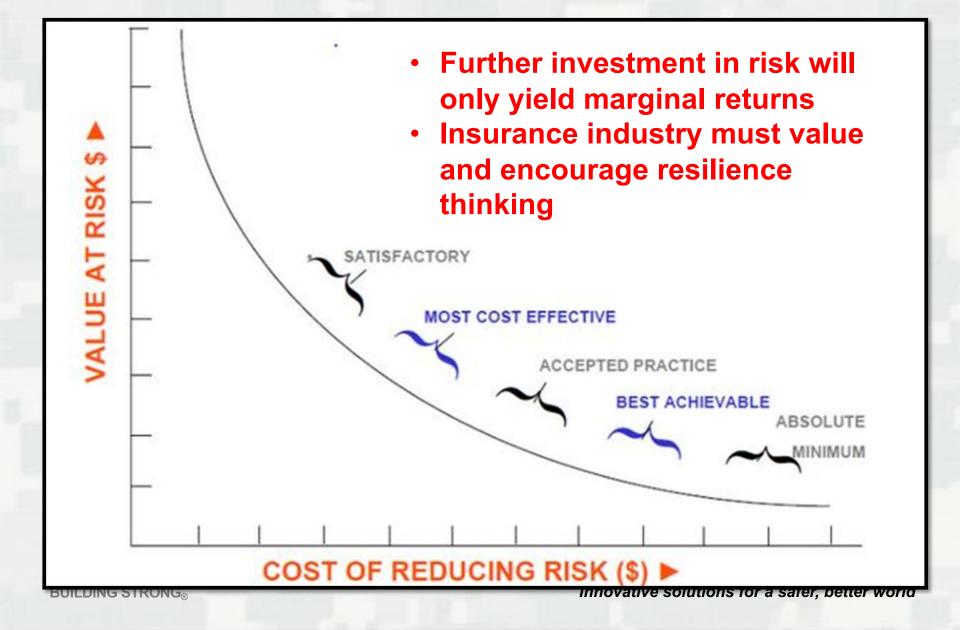

- Over 15 risk/decision analysts, scientists, & engineers developing solutions that support decisions across broad gov't needs.
- State-of-the-science models and tools for structuring and conducting risk assessment, stakeholder engagement, resource prioritization, planning, and other emerging issues relevant to USACE, DoD, and Nation.

Current Programs

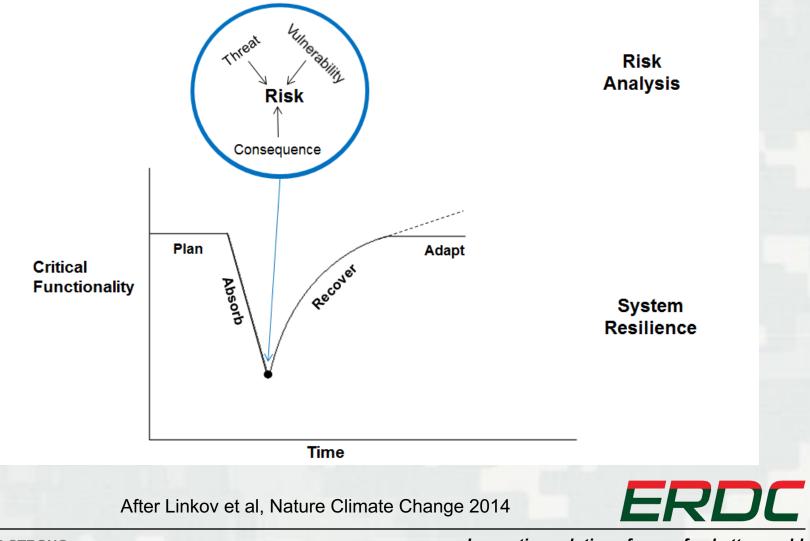

- Cutting edge R&D for DoD as well as for DHS, DOE, DHHS, EPA, CPSC and others.
- Applying Decision-Analytic tools to evaluate alternatives, bridge data-to-decision gaps, integrate stakeholder values into solution development, and prioritize research for a variety of technologies & industries.


Integrating Risk Analysis, Life Cycle Assessment, and Multi-Criteria Decision Analysis models for the assessment of emerging materials & risks.

Global **Risks**

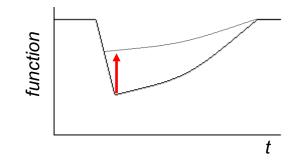


State-of-Practice in Risk Management

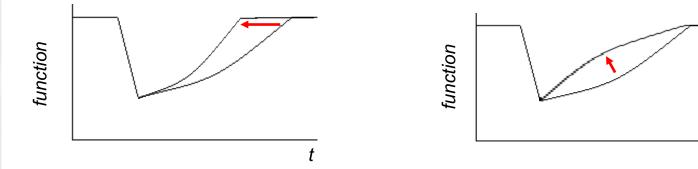


Innovative solutions for a safer, better world

BUILDING STRONG®



Risk and Resilience: Thresholds

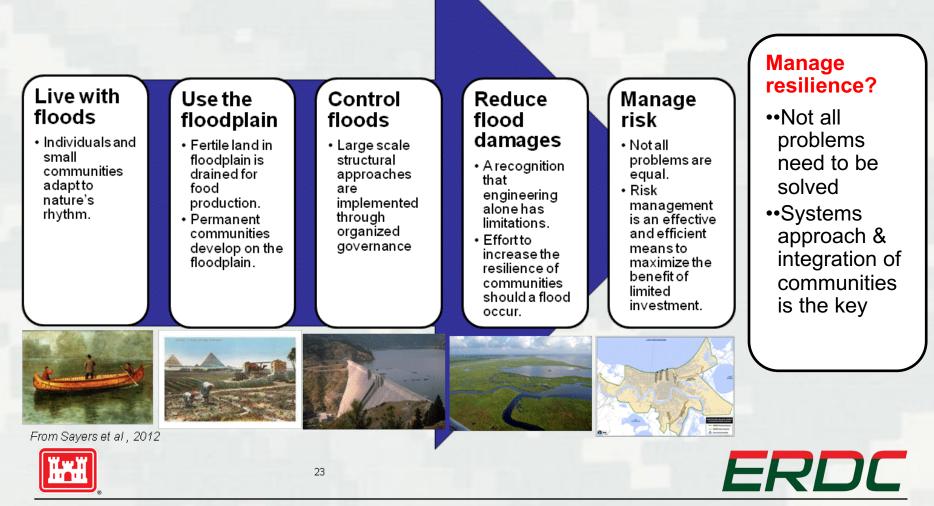

BUILDING STRONG®

Importance of Recovery

Risk Reduction

Resilience through Recovery Enhancement

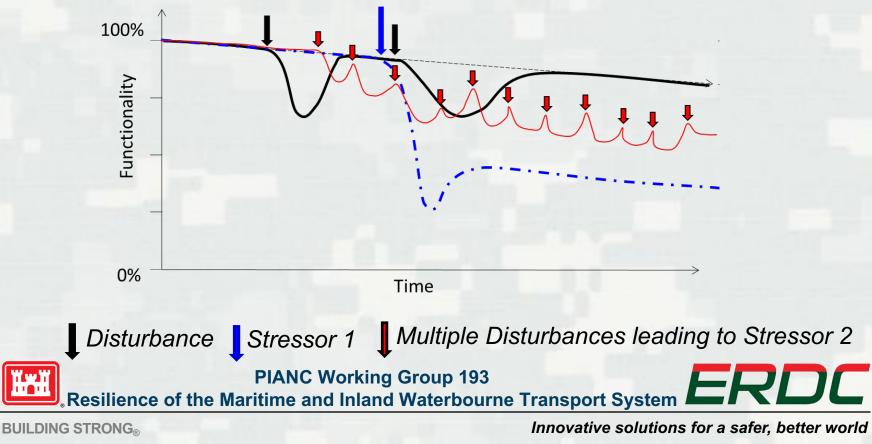
From Linkov et al, Nature Climate Change 2014

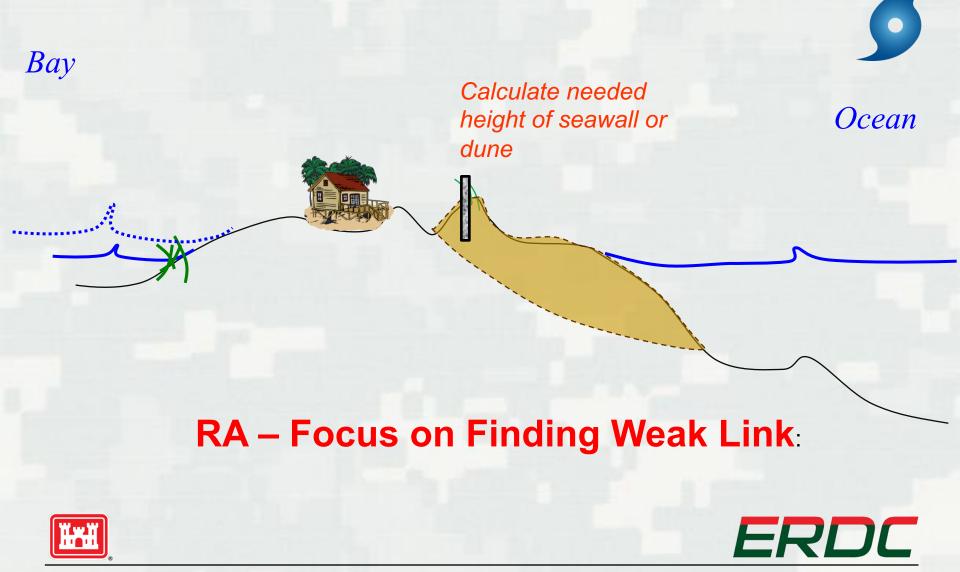


Innovative solutions for a safer, better world

t

BUILDING STRONG®


Future: Evolution of Approaches for Flood Risk Management


BUILDING STRONG®

Modern View of System Functionality

- System view: Environment is part of socio-economic-technical system
- Consider both disturbances and stressors, co-occurances

Component vs. System

Innovative solutions for a safer, better world

BUILDING STRONG®

Resilience: Political Importance and Challenge

The White House

Office of the Press Secretary

For Immediate Release

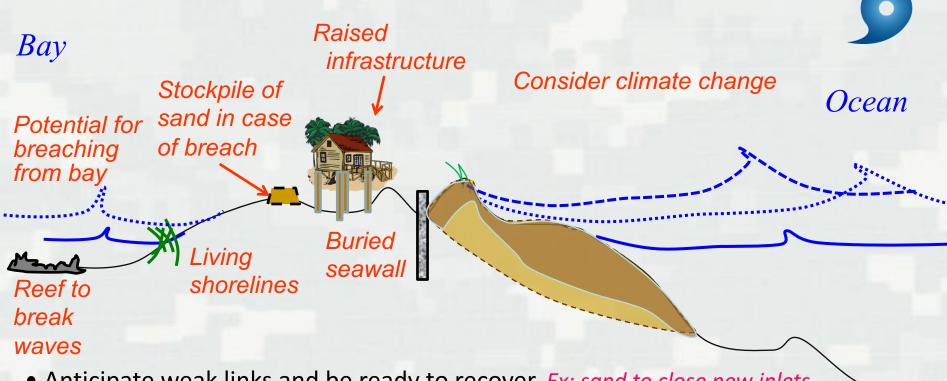
Presidential Proclamation -- Critical Infrastructure Security and Resilience Month, 2013

CRITICAL INFRASTRUCTURE SECURITY AND RESILIENCE MONTH, 2013

Executive Order:

"resilience" means the ability
 to anticipate, prepare for, and
 adapt to changing conditions
 and withstand, respond to, and
 recover rapidly from
 disruptions.

BY THE PRESIDENT OF THE UNITED STATES OF AMERICA


A PROCLAMATION

Over the last few decades, our Nation has grown increasingly dependent on critical infrastructure, the backbone of our national and economic security. America's critical infrastructure is complex and diverse, combining systems in both cyberspace and the physical world – from power plants, bridges, and interstates to Federal buildings and the massive electrical grids that power our Nation. During Critical Infrastructure Security and Resilience Month, we resolve to remain vigilant against foreign and domestic threats, and work together to further secure our vital assets, systems, and networks.

Management at System Level

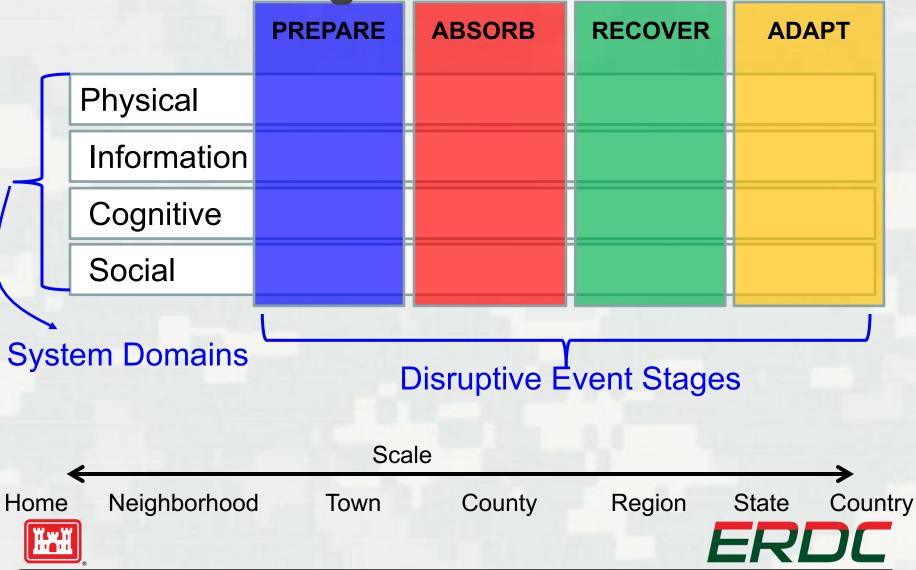
- Anticipate weak links and be ready to recover. *Ex: sand to close new inlets.*
- Provide diverse and redundant protection. Ex: buried seawall AND beach/dune system.
- Ensure availability of alternate networks. *Ex: multiple electrical power circuits.*
- Provide accessible information for rapid decision-making. Ex: raised homes,

ERDC

Risk Management Challenges

Risk = *Threat* × *Vulnerability* × *Consequence*

- Requires specific knowledge and quantification of all three components
- No temporal component
- Modern system complexity and threat uncertainty make risk management difficult and expensive.



ERDC

Assessment Tools

	Assessment Methods:					
Increasing customizatio performance	Scorecard	Decreasing assess ger perfor		Pros	Cons	Application to MIWTS
	Index Matrix	asing data n ss general sy performance	card	Rapid; promotes discussion; can include non-structural components	Only relative to previous assessment at the same site with similar rubric; utilizes expert judgement	Port Resilience Index: A Port Management Self-Assessment (Sempier 2016)
Increasing system customization; assess performance over time	Input-Output Network	ta needs, al system nce		can include non-structural	Only relative to other sites (normalized); pre-defined metrics may not be equally relevant at each site; does not identify improvements	No known existing tools; Possible metrics: frequency of dredging, shoaling rate, dollar or mass of cargo per day, ships per day, rate of sea- level rise, shoreline erosion rate; some metrics are available for the U.S. (CMTS)
~				stages of an event cycle	locations or even when	Existing tools are not MITWS-specific but are flexible enough for application in this sector. E.g., Bruneau 2003, Linkov 2013, Karamouz 2014
			Output		Time consuming to create; requires intimate knowledge of the system; difficult to model non-structural components of resilience	Existing tools are not MITWS-specific but are flexible enough for application in this sector. E.g., Hollnagel 2012, JHU APL 2013
III.			work	and relationships; allows scenario analysis; explicitly		MARS: Methodology for Assessing Resilience of Seaports; Achuthan 2013

cOnstructing the resilience matrix

BUILDING STRONG®

General Form of Resilience Matrix

ime ———	Adve	rse Event		
Previous Cycle	Plan/Prepare	Absorb	Recover	Adapt
Physical	State and capability of equipment and personnel, network structure	Event recognition and system performance to maintain function	System changes to recover previous functionality	Changes to improve systen resilience
Information	Data preparation, presentation, analysis, and storage	Real-time assessment of functionality, anticipation of cascading losses and event closure	Data use to track recovery progress and anticipate recovery scenarios	Creation and improvement of data storage and use protocols
Cognitive	System design and operation decisions, with anticipation of adverse events	Contingency protocols and proactive event management	Recovery decision- making and communication	Design of new system configurations, objectives, and decision criteria
Social	Social network, social capital, institutional and cultural norms, and training	Resourceful and accessible personnel and social institutions for event response	Teamwork and knowledge sharing to enhance system recovery	 Addition of or changes to institutions, policies, trainin programs, and culture

From: Linkov et al, Env. Sci. & Tech., 2013

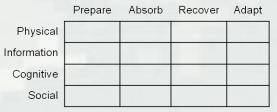
BUILDING STRONG®

Assessment Process

- 1. Define System and Threats
- 2. Identify Critical Functions of the System
- 3. Develop Performance Indicators
- 4. Calculate Performance Scores
- 5. Identify Gaps to Prioritize Efforts

3. Performance Indicators

Experts identify indicators of performance for each cell of the matrix for each critical function.


Based on resilience properties:

- Redundancy
- ► Flexibility
- Modularity
- Robustness
- Resourcefulness
- Distributed
- ► etc.

BUILDING STRONG®

Housing

Transportation

	Prepare	Absorb	Recover	Adapt
Physical				
Information				
Cognitive				
Social				

Wildlife Habitat

	Prepare	Absorb	Recover	Adapt
Physical				
Information				
Cognitive				
Social				

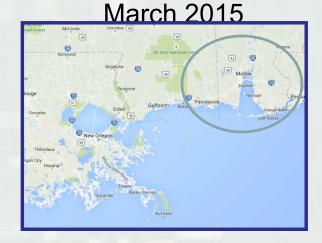
4. Performance Scores

Users score indicators or metrics (qualitative or quantitative) for the capability of the system to perform in each cell of the matrix.

Metrics can be normalized to get relative scores.

For example:

	<u>Raw Value</u>	Normalized Score
Participation in mobile alert system:	48%	7.5
Existing dunes/berms:	8'	6
Access to debris removal equipment:	med-low	2

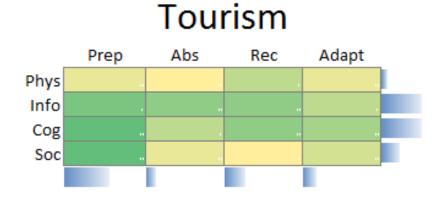

Coastal Storm Resilience Case Studies

Rockaway, New York April 2014

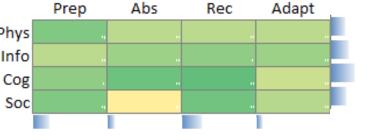

- Post-Sandy documentation
- Influx of recovery funds
- Specific Metrics

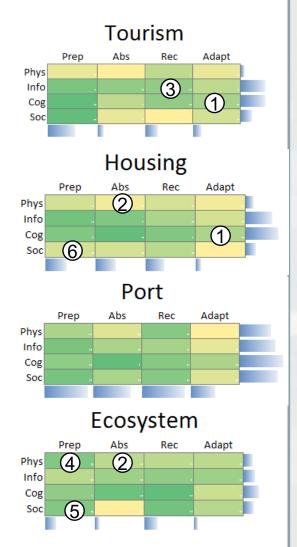
Mobile,
 Alabama

- Katrina-size threat
- Previous resilience work
- Expert / stakeholder scores



BUILDING STRONG®


Results


Port Abs Prep Prep Abs Rec Adapt Phys Phys Info Info Cog Cog Soc Soc

Ecosystem

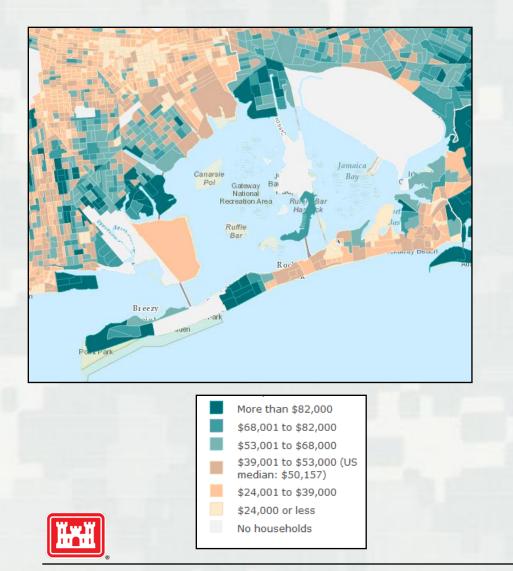
Low Existing Capacity ERDC High Existing Capacity Innovative solutions for a safer, better world **BUILDING STRONG**® 23

Project Evaluation

- 1. Building code improvements, enforcement
- 2. Replace bulkheads with natural revetment and living shorelines to mitigate erosion
- 3. Develop network of licensed contractors for businesses to access to rebuild
- 4. Reduce impervious surfaces in new upland developments
- 5. Continuing education on ecosystem services, fragility and human impact
- 6. Continuing education on public safety

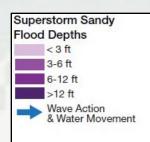
Partnerships to Address Gaps

	Prepare	Absorb	Recover	Adapt
Physical	USACE	USACE	USACE FEMA	USACE
Information	NOAA USACE	Mayor's Office FEMA	FEMA NYC OEM	NYC Planning
Cognitive	NYC Planning	NYC OEM FEMA	FEMA NYC	USACE NYC
Social	NYC OEM	NYC OEM FEMA	NGO/Non- Profit HUD	NGO/Non- Profit


BUILDING STRONG®

Innovative solutions for a safer, better world


ERDC


Rockaway Regional Overview

26

BUILDING STRONG®

Critical Function – Stakeholder Engagement

- System has multiple functions, but not all of them are equally important
 - Stakeholder elicitation is required
 - Prioritization of project alternatives
 - Values, preferences
 - Public education

"We want to include you in this discussion without letting you affect it"

BUILDING STRONG®

Resilience and Social Vulnerability Indexes

BRIC

The Baseline Resilience Index for Communities *Cutter, Burton, and Emrich (2010)* **SoVI** Social Vulnerability Index *Cutter, Boruff, and Shirley (2010)*

CDRI

Community Disaster Resilience Index Peacock et al. (2010) SVI Social Vulnerability Index Flanagan et al. (2011)

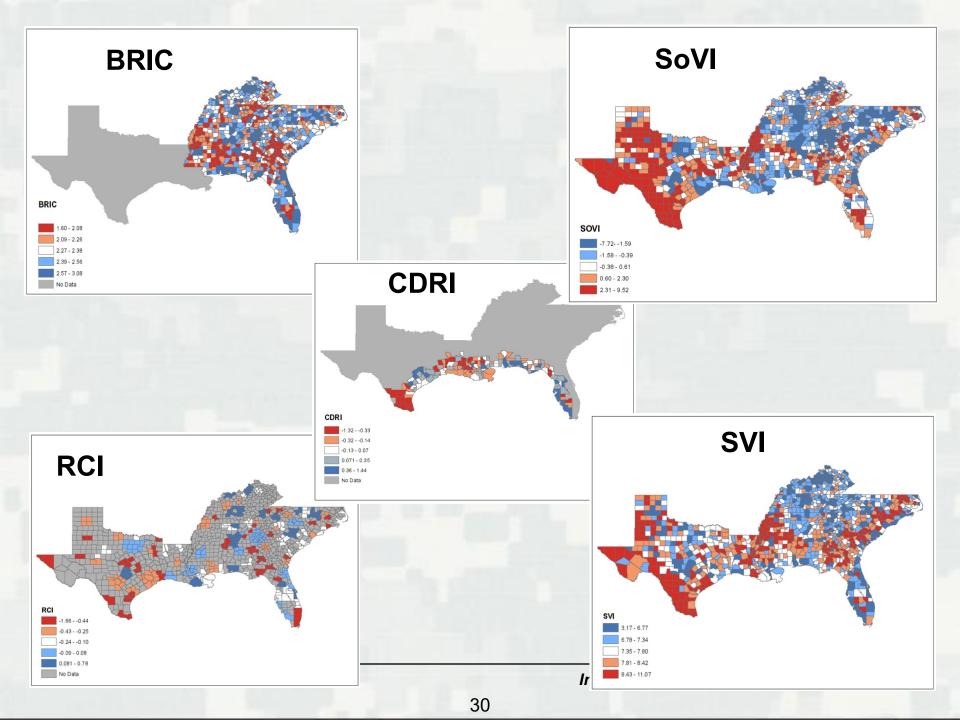
RCI Resilience Capacity Index Foster (2012)

BUILDING STRONG

Resilience Index Goals:

- "baseline set of conditions, from which to **measure the effectiveness** of programs... specifically designed to **improve disaster resilience**"
- "comprehensive measure of community disaster resilience"
- "resilience capacity"..."having higher capacity [implies] that the region has factors and conditions thought to position a region well for effective post-stress resilience performance."

Social Vulnerability Index Goals:


- "...tool for policy makers and practitioners [as] it shows where there is uneven capacity for preparedness and response and... is useful as an indicator in **determining differential recovery from disasters**"
- "improving all phases of the disaster cycle: mitigation, preparedness, response, and recovery"

29

BUILDING STRONG®

Not all indices give the same result

		CDRI LowHigh	RCI LowHigh	BRIC LowHigh	SOVI LowHigh	SVI LowHigh
Galveston Region	Cameron, LA Jefferson, TX Chambers, TX			N/A		
Mobile Region	Mobile, AL Baldwin, AL Escambia, FL Santa Rosa, FL		N/A		-	
Tampa Region	Hillsborough, FL Manatee, FL Sarasota, FL					

If city/state/federal planners are going to use an index to determine how to prioritize investments, which indices actually align with performance?

BUILDING STRONG®

ERDC

Method

- Partial validation of resilience/vulnerability score by multivariate regression analysis
- Test sign (+/-) and significance of index in explaining Damages, Fatalities, and Disaster Declarations
- Dataset: 10 southeastern US states
 - 2000 to 2012
 - 67,000 county-events
 - \$170 billion in direct property losses
 - 3,394 lives lost
 - 7,625 declared county-level disasters

Summary of Results

Index	Property	Fatalities	Disaster
Index	Damages	ratainties	Declarations
BRIC	0		0
CDRI	•	•	
RCI	•	•	
SoVI	•		•
SVI	•	•	0

Filled circles indicate correlation is of the expected sign and statistically significant.

Open circles indicate correlation is of the opposite sign and statistically significant.

No circle indicates regression results were not statistically different than zero.

BUILDING STRONG®

Innovative solutions for a safer, better world

ERDC

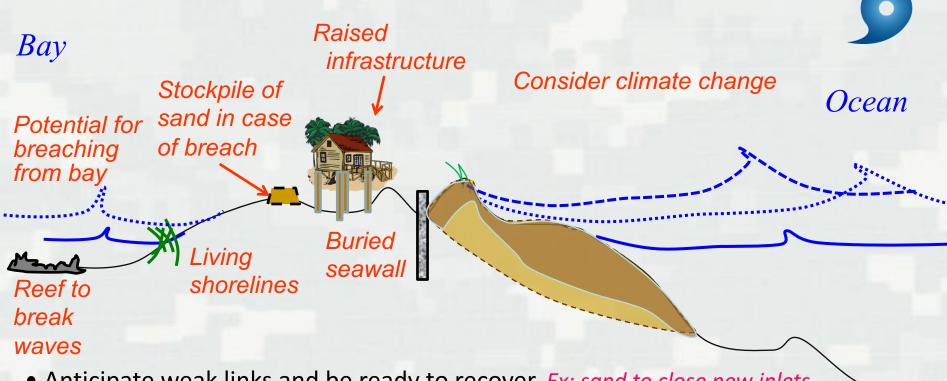
Conclusions & Next Steps

Number of Metrics in Index

BRIC: 26
CDRI: 75
RCI: 12
SoVI: 10
SVI: 15

 Users

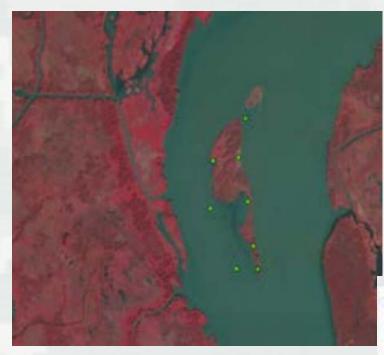
 look at the specific underlying metrics to determine suitability for your region


Next Steps

Find recovery metrics to validate thepost-disaster performance of indices!

BUILDING STRONG®

Management at System Level



- Anticipate weak links and be ready to recover. *Ex: sand to close new inlets.*
- Provide diverse and redundant protection. Ex: buried seawall AND beach/dune system.
- Ensure availability of alternate networks. *Ex: multiple electrical power circuits.*
- Provide accessible information for rapid decision-making. Ex: raised homes,

ERDC

Engineering with Nature ENGINEERING W

BUILDING STRONG®

afer, better world

Natural and Nature-Based Features

NATURAL AND NATURE-BASED FEATURES AT A GLANCE

General coastal risk reduction performance factors include: Storm surge and wave height/period, and water levels

Bl

References

- Sikula, N., Mancillas, J., Linkov, I., McDonagh, J.A. (2015). Traditional Risk Management Isn't Enough: A Conceptual Model for Resilience-Based Vulnerability Assessments. *Environment, Systems, and Decisions.*
- DiMase D, Collier ZA, Heffner K, Linkov I (2015, in press) Systems Engineering Framework for Cyber Physical Security and Resilience. *Environment, Systems and Decisions*.
- Eisenberg, D.A., Linkov, I., Park, J., Chang, D., Bates, M.E., Seager, T., (2014). Resilience Metrics: Lessons from Military Doctrines. *Solutions* 5:76-87.
- Roege, P., Collier, Z.A., Mancillas, J., McDonagh, J., Linkov, I. (2014). Metrics for Energy Resilience. Energy Policy 72:249–256.
- Linkov, I., Fox-Lent, C., Keisler, J., Della-Sala, S., Siweke, J. (2014). Plagued by Problems: Resilience Lessons from Venice. *Environment, Systems, Decision* 34:378–382.
- Linkov, I, Kröger, W., Levermann, A., Renn, O. et al. (2014). Changing the Resilience Paradigm. Nature Climate Change 4:407-409.
- Linkov, I., Anklam, E., Collier, Z., DiMase, D., Renn, O. (2014). Risk-Based Standards: Integrating Top-Down and Bottom-Up Approaches. *Environment, Systems, and Decisions* 34:134-137
- Collier, Z.A., Linkov, I., DiMase, D., Walters, S., Tehranipoor, M., Lambert, J.(2014). Risk-Based Cybersecurity Standards: Policy Challenges and Opportunities. *Computer* 47:70-76.
- Linkov, I., Eisenberg, D. A., Plourde, K., Seager, T. P., Allen, J., Kott, A (2013). Resilience Metrics for Cyber Systems. *Environment, Systems and Decisions* 33:471-476.
- Park, J., Seager, TP, Rao, PCS, Convertino, M., Linkov, I. (2013). Contrasting risk and resilience approaches to catastrophe management in engineering systems. *Risk Analysis* 33: 356–367.

• (2013). Measurable Resilience for Actionable Policy. *Environmental Science and Technology*

BUIL47,10108,10110.

IRGC Resource Guide on Resilience I. Linkov and M.V. Florin (eds)

- The guide is composed of 50 invited short pieces with an annotated bibliography 'for further reading'. It thus provides background information on the various perspectives and guides readers to other available literature sources.
- Papers can be searched for key words.
- They are listed by author and allocated to one type: concept, approach, illustration or case study; and one sector: engineering / infrastructure, ecological, social / community, business, cross-cutting view.
- The guide was launched on 30 August 2016

BUILDING STRONG®

Types: 🗹 Case Studies 🗹 Approach	es 🗹 Conceptual	Search.	
File	Author(s)	Туре	Sector
Introduction	Linkov		
Panarchy	Allen, Angeler, Garmestani	Conceptual	Ecological
Ecological Resilience	Allen, Angeler, Garmestani, Sundstrom	Approaches	Social / Community
Validating Resilience and Vulnerability Indices in the Context of Natural Disasters	Bakkensen, Fox-Lent, Read, Linkov	Conceptual	Engineering & infrastructure
Infrastructure Network Resilience	Barker, Ramirez- Marquez	Approaches	Engineering & infrastructure
Operationalize Data-drive Resilience in Urban Transport Systems	Bellini, Nesi	Case Studies	Engineering & infrastructure
The New Resilience Paradigm	Fiksel	Conceptual	Engineering & infrastructure
Measuring Urban Resilience As You Build It	Flax	Case Studies	Social / Community
Resilience in IRGCs Recommendations for Risk Governance	Florin	Conceptual	
Resilience to Unexpected Impacts of Emerging Risks	Florin	Conceptual	
Five Impediments to Building Societal Resilience	Flynn	Conceptual	Social / Community
Preparing Energy Systems for the Unexpected	Gössling-Reisemann	Approaches	Ecological
Resilience Engineering and Quantification	Haering et al.	Approaches	Engineering & infrastructure
A Generic Framework for Resilience Assessment	Heinimann	Approaches	Engineering & infrastructure
Managing Extraordinary Risks	Helm	Approaches	Engineering & infrastructure
A Business Continuity Perspective on Organisational Resilience	Herbane	Conceptual	Business
Resilience Engineering and Indicators of Resilience	Herrera	Conceptual	Engineering & infrastructure
Formalizing Resilience Concepts for Critical Infrastructure	Hynes et al.	Case Studies	Engineering & infrastructure
Organizational Resilience	limola	Approaches	Business
Principle for Resilient Design	Jackson	Approaches	Engineering &

infrastructure

Risk and Resilience Management in Social-Economic Systems	Kovalenko, Sornette	Conceptual	Social / Community
Implementation and Measurement of Strategies for the Unpredictable	Longstaff	Conceptual	Social / Community
The Quest for Enterprise Resilience	Newnham, Crask	Approaches	Business
Two Applications of Resilience Concepts and Methods	Oien	Case Studies	Engineering & infrastructure
Modern Resilience	Palma-Oliveira	Conceptual	Psychological
Ecological & Social-ecological Resilience	Quinlan, Gunderson	Conceptual	Ecological
Inclusive Resilience	Renn	Conceptual	Social / Community
Creating Value Through Resilience	Roege	Case Studies	Social / Community
Measuring Economic Resilience to Disasters	Rose	Approaches	Social / Community
Engineering Resilience in Critical Infrastructures	Sansavini	Case Studies	Engineering & infrastructure
Towards a Cross-disciplinary Understanding and Operationalisation of Resilience	Schanze	Case Studies	Engineering & infrastructure
A Multidimensional Review of Resilience	Seager et al.	Conceptual	Engineering & infrastructure
Natural Hazard Disaster Risk Reduction as an Element of Resilience	Thomas	Approaches	Social / Community
Resilience Analytics for Systems of Systems	Thorisson, Lambert	Approaches	Engineering & infrastructure
Critical Infrastructure Resilience	Vugrin	Case Studies	Engineering & infrastructure
Enhancing Community Resilience	Walsh, Madden, Purœll	Case Studies	Social / Community
UN City Disaster Resilience Scorecard	Williams, Sands	Approaches	Business
Measuring the Resilience of Infrastructure Systems	Willis	Approaches	Engineering & infrastructure
Resilience as Graceful Extensibility to Overcome Brittleness	Woods	Conceptual	Social / Community
On Resilience-based Risk Governance	Xu, Xue	Conceptual	Social / Community
Aligning Different Schools of Thought on Resilience of Complex Systems and Networks	Yu, Rao	Approaches	Engineering & infrastructure
Flood Resilience	Zevenbergen	Case Studies	Engineering & infrastructure

Questions?

catherine.fox-lent@usace.army.mil

BUILDING STRONG®