Effects of Biogas and Septic Tank Sludge Centrate on Microalgae Cultivation

Lu. Dingnan (Matthew) Doctoral Student Prof. Zhang. Xiaoqi (Jackie), Ph.D., P.E.

Civil & Environmental Engineering University of Massachusetts Lowell

Presented by

Nihar R. Mohanty, Ph.D.

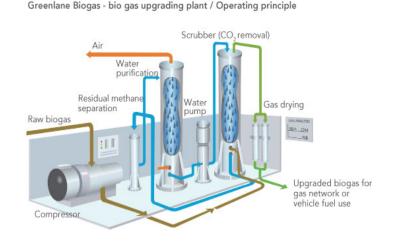
Environmental Engineer, MassDEP Adjunct, Civil & Environmental Engineering, Umass Lowell

Introduction (Microalgae and Anaerobic digestion)

- Integration of microalgae-based anaerobic
 digestion (AD) and wastewater treatment (WWT)
 can provide many environmental and economic
 advantages:
 - ✓ Electrical power and heat for AD
 ✓ Offset energy consumption for algae cultivation, processing and extraction
 ✓ Nutrients removal in WWT
 ✓ Potential to replace actived sludge
 ✓ Potential to minimize CO₂ emission

Algae cultivation pond in Israel for biofuel

https://www.greenprophet.com/2011/09/seabiotic-biofuel-a



Learning with Purpose

Introduction (Biogas & biogas purification)

Main components of biogas:

- \checkmark Methane CH₄ (40-70%)
- ✓ Carbon dioxide CO_2 (30-60% downgrade engine efficiency)
- ✓ Hydrogen sulfide H₂S (trace levels, contributes to corrosion of pipelines and engines)
- ✓ Water vapor
- Current purification methods (physical absorption, chemical solvents, membrane separation, etc.) are energy intensive.

Biogas purification system by pressurized water (physical treatment)

http://www.sarlin.com/sarlin_products/Biogas-upgradingplants/z3awigjh/2a12e6e6-e2e0-4eb1-a63f-9399f4ca1b25

Introduction (Biogas purification by microalgae)

• Algae can scrub CO₂ and H₂S from biogas:

✓ Low cost

✓ High efficiency

✓ Increases microalgal productivity and nutrient assimilation

✓ CO_2 from biogas can control the pH (~8.0) in culture solution (prevent NH₃[↑] and PO₄[↓]) ✓ First proposed by Oswald and Golueke in 1960

Biogas purification system by algae (biological treatment)

https://www.israel21c.org/is-2016-the-year-of-the-algae/

 \checkmark Minimize the CO₂ emission to atmosphere

Introduction (microalgae and WWT)

Cultivation of microalgae in different types of

wastewater :

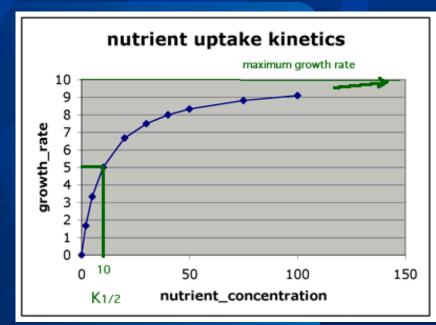
- ✓ Reduce nutrients (N and P)
- ✓ Reduce soluble chemical oxygen demand (sCOD)
- ✓ Increased algae production
- ✓ Currently tested on primary effluent,
- industrial effluent and high-strength
- wastewater (Wang, et al. 2010; Wang, et al
- 2014)

The use of algae in wastewater treatment https://doi.org/10.1016/S0015-1882(14)70180-6

Introduction (Septic tank sludge and its centrate) • Septic tank sludge (STS): \checkmark Is the final product of onsite wastewater treatment system (septic system) ✓ 20 % population in the US relies on septic systems Usually has high concentrations of organic carbon (~10,000 mg/L), ammonia nitrogen (~250 mg/L), and phosphate (~55 mg/L) (Diaz-Valbuena et al. 2011).

Septic tank sludge centrate (STSC):

✓ Rarely studied


✓ Potentially a good medium for algae culture

STSC

Introduction (algae growth kinetics)

• Ideal microalgae growth kinetics can be determined if cells are grown under similar conditions (as shown in curve) • The growth rate is always controlled by the most limited nutrient The nutrient levels can also affect the lipid content in cells (Khozin-Goldberg and Cohen 2006, Rodolfi et al. 2009, Xin et al. 2010)

Graphical representations of ideal microalgae growth

http://web.pdx.edu/~rueterj/courses/esr472

Objectives

- Evaluate the effects of using biogas and septic tank sludge centrate (STSC) as the major carbon sources and growth medium for microalgal cultivation.
 - Study the effect of biogas on microalgal biomass growth (autotrophic metabolism);
 - Study the effect of STSC on microalgal biomass growth (heterotrophic metabolism);
 - 3. Analyze the effect of biogas on nutrient (N and P) removal from STSC;
 - 4. Study the kinetics of nutrient removal based on biological assimilation;
 - 5. Study the effect of biogas and STSC on microalgal lipid content.

Significance

AD of microalgae has been widely studied and proven to produce clean energy – methane
Cultivation of microalgae in different types of wastewater for biomass production and WWT is also receiving attention
This study aims to integrate the two aspects
We believe:

> If the processes of microalgae-based biogas purification and <u>anaerobic centrate reuse</u> can be integrated, we could redefine the role of microalgae in environmental engineering

Cultivation

microalgae to

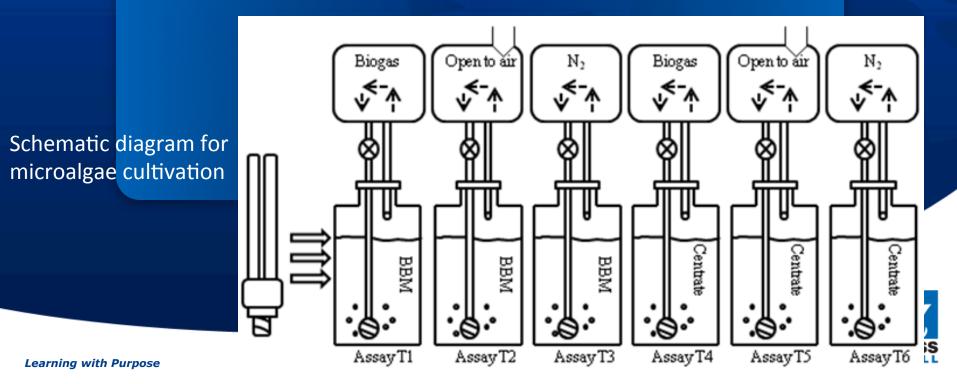
generate

omass

Materials (STSC and microalgae)

• STCS:

✓ Filtered using glass fiber filters ✓ Autoclaved at 120°C for 30 min Microalgae: \checkmark Strain was isolated from the primary clarifiers at the Lowell Regional Wastewater Utility ✓ Cultivated in the modified Bold Basal's medium (BBM)



Single microalgal cell image obtained in Umass Lowell Environmental Lab

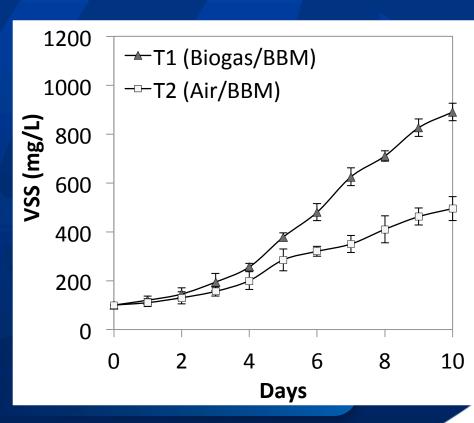
Methods (experimental design)

- 500 mL culture bottles with 400 mL working volume for 10 days
 Metal cap with two stainless steel fittings and rubber washer
 Biogas circulation from a Tedlar bag to culture solution, forced by a peristaltic pump (10mL/min)
- •30°C and 24 hr illumination at roughly 3,000 Lux

Cultivation Apparatus

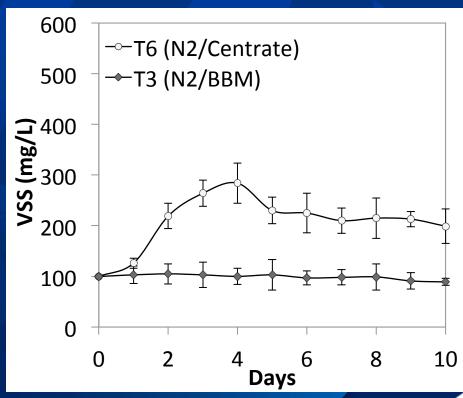
Methods (group set-up)

- 1. Assay (T1) : biogas and BBM
- 2. Assay (T2): air and BBM
- 3. Assay (T3): N₂ and BBM


- 4. Assay (T4) : biogas and STSC
- 5. Assay (T4) : air and STSC
- 6. Assay (T4) : N₂ and STSC

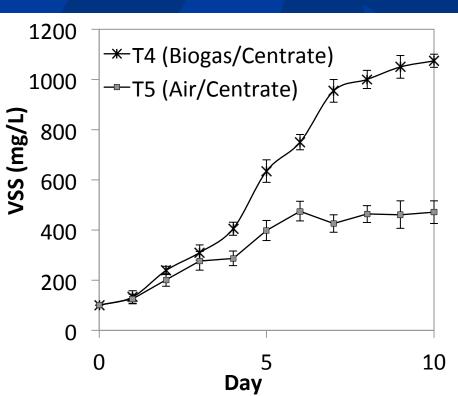
- Comparison between T1 and T2 can show the advantage of high concentration of CO₂ from biogas
- Comparison between T3 and T6 can test the potential of heterotrophic pathway of microalgae in STSC and can show the advantages of joint effect from biogas and STSC

Results (T1 vs. T2)


• Biomass Production (measured by volatile suspended solids VSS): \checkmark T1's biomass production (890 mg/L) \checkmark T2's biomass production (495 mg/L) •Specific growth rate (μ) (unit: day⁻¹) \checkmark T1 and T2 both had the highest μ at day 4-5 ✓T1 μ (0.53 d⁻¹) ✓ T2 μ (0.35 d⁻¹)

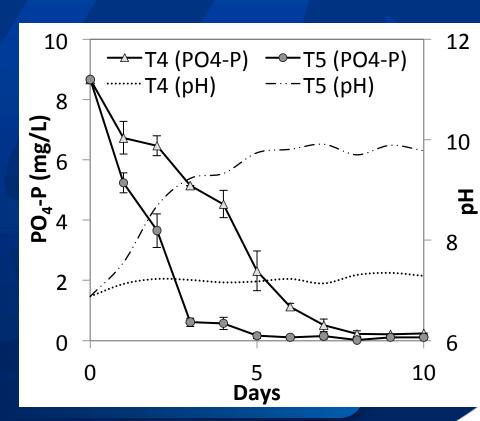
Results (T3 vs. T6)

• Biomass Production (measured by VSS): \checkmark T3's biomass production (negative) \checkmark T6's biomass production (306 mg/L) • Specific growth rate (μ) (unit: day⁻¹) \checkmark T6 had the highest μ at day 1-2 ✓ T6 μ (0.55 d⁻¹) • Results show a short hyper-growth period, indicating increased heterotrophic metabolism of microalgae in STSC

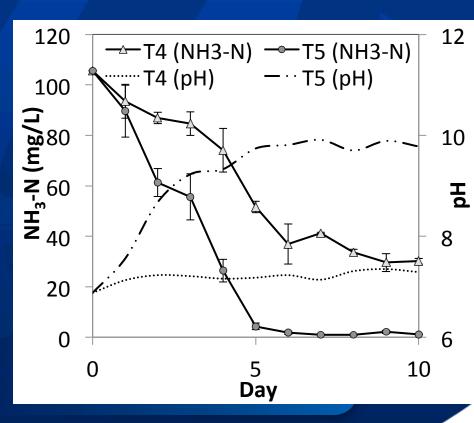


Results (T4 vs. T5)

• Biomass Production (measured by VSS): \checkmark T4's biomass production (1,074 mg/L) \checkmark T5's biomass production (471 mg/L) • Specific growth rate (μ) (unit: day⁻¹) \checkmark T4 had the highest μ at day 1-2 (0.59) d-1) \checkmark T5 had the highest μ at day 4-5 (0.45 d-1) Results show a maximum biosynthetic rate


governed by mixotrophic metabolism

Results (Phosphate removal for T4 and T5)


- Both assays show significant reduction of phosphate (T4 = 97.27%, T5 = 98.87%)
- T4 had slow reduction rate 4.14 mg/L*d⁻¹
- •T5 had increased reduction rate of 8.10 mg/L*d⁻¹
- Increase in pH with time of T5 indicates
 phosphate precipitation
- T4's pH was buffered due to high CO₂ concentration in biogas

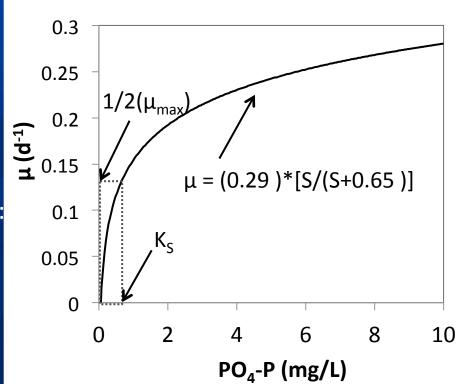
Results (Ammonia removal for T4 and T5)

- T5 had greater ammonia removal than T4 (T4 = 71.50 %, T5 = 98.96%)
- Portion of volatilization of ammonia in T5 can be calculated by equation
 - $FAN/TAN = 1/(1+10^{(pKa-pH)})$
- In T5, 80.92% of ammonia was volatilized (only 18.04% was used by microalgae)
- In T4, ammonia volatilization was
- neglected
- •Again, in T4, the pH was buffered due to
- the presence of biogas

Results (Algae growth kinetics of nutrient removal for T4)

• (Y) Yield of biomass with respect to the nutrient consumption of phosphorus or nitrogen:

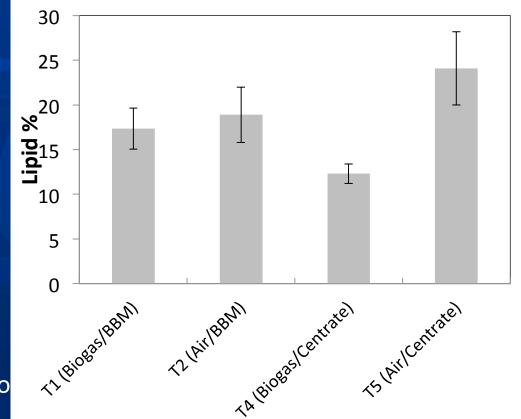
 $> Y_{P} = (B-B_{0})/(P_{0}-P); Y_{N} = (B-B_{0})/(N_{0}-N)$ {B is biomass}


• Y_P/Y_N is 8.95

- Ideal N/P ratio (Y_{ideal}) for microalgae is 7.2 (C₁₀₆H₁₈₁O₄₅N₁₆P) (Grobbelaar, 2003)
- $Y_P/Y_N > Y_{ideal}$ indicates the phosphorus was the limiting nutrient
- Kinetics of nutrient removal should focus on limiting nutrient P.

Results (Algae growth kinetics based on phosphate removal for T4)

Monod equation was used
> dx/x = [µ_{max}*S / (K_s + S)]*dt
Microsoft Excel Solver was used to
determine the Monod equation coefficients:
> µ_{max} = 0.29 (d⁻¹); K_s = 0.65 (mg/L)



Results (Lipid analysis)

• T1 and T2 had similar lipid contents
 ✓ T1 (17.3 %), T2 (18.9 %)

- T5 had higher lipid content than T4
 ✓ T4 (12.3 %), T5 (24.1 %)
- The volatilization of NH₃ and precipitation of PO₄ in T5 caused the "nutrients deficient condition", and significantly triggered the microalgae to accumulate lipid.

•This situation was widely observed by other researchers (Khozin-Goldberg and Cohen 2006, Converti et al. 2009, Rodolfi et al. 2009, Xin et al. 200

Conclusion

- Biogas and septic tank sludge centrate can cause microalgae to shift to mixotrophic metabolism, and significantly increase biomass production
- Biogas contains high concentration of CO₂, can buffer the pH of culture solution and prevent ammonia volatilization and phosphate precipitation
- Phosphate is the limiting nutrient in this cultivation system, and its concentration can be used to predict the microalgae growth
- Nutrient deficient condition can cause the microalgae to accumulate more lipid

Acknowledgements

- The authors would like to acknowledge the funding support from the University of Massachusetts Lowell (UML).
- The authors thank Prof. Mark Hines from the Biological Sciences Department assistance in the biogas analyses.
- The authors would also like to thank the staff at the Lowell Regional Wastewater Utility for assistance in obtaining septic sludge and clarifier supernatant.

Questions?

