NEWEA Spring Meeting 2017

Variations in hydrogen sulfide concentrations in a wastewater pumping station with an odor control system

Mohamed F. Hamoda Professor of Environmental Engineering

Outline

- 1. Introduction
- 2. Plant Description
- 3. Monitoring Program
- 4. Results and Discussion
- 5. Conclusions

1. Introduction

Odorous Compounds Associated with Municipal Wastewater

Odorous Compounds	Example Gases		
Inorganic Gases	Ammonia, Hydrogen Sulfide		
	(Allyl, Amyl, Benzyl, Methyl, Ethyl)		
Mercaptans	Mercaptan		
Other Organic Sulfides	Dimethyl Sulfide, Thiocresol, Thiophenol		
Diamines	Cadaverines (1, 5 pentanediamine)		
Other Organic N	Idole, Pyridine, Skatole		
Volatile Fatty Acids			
(VFA)	(Acetic, Propionic, Butyric) Acids		
	(Dibutyl, Di-isopropyl, Dimethyl, Triethyl)		
Amines	Amines		

Introduction

Odorous Sulfur Compounds in Wastewater

Substance	Odor Threshold (ppm)	Molecular Weight		
Allyl Mercaptan	0.00005	74.15		
Dimethyl Sulfide	0.0001	62.13		
Ethyl Mercaptan	0.000019	62.1		
Hydrogen Sulfide	0.00047	34.1		
Methyl Mercaptan	0.0011	48.1		
Thiocresol	0.000062	124.21		
Thiophenol	0.000062	110.18		

Odorous Sulfur Compounds in Wastewater

Introduction

Chemistry of Hydrogen Sulfide Formation in Wastewater

 SO_4^{2-} + Organic Matter $\rightarrow S^{2-}$ + H_2O + CO_2 (due to anaerobic reaction)

 $S^{2-} + 2H^+ \rightarrow H_2S$

Introduction

Health Impacts Associated With Hydrogen Sulfide

	Health Impact							
Exposure Routes	Death	Systemic Effect	Immunolo- gical Effect	Neurologi- cal Effect	Reproductive Effect	Development Effect	Cancer	
Inhalation	Yes	Yes	None	Yes	Limited Data	None	None	
Oral	None	None	None	None	None	None	None	
Dermal	None	None	None	None	None	None	None	

Odor Control Technology

Odor Control Technology	Types of odor treated	H2S Concentration ppm	Air flow range m3/h	Efficiency %
Adsorption (Activated Carbon)	VOCs, H2S, broad range of compounds	Peak Less than 250 Average Less than 50	500 - 15,000	Greater than 99%
Bioscrubber	VOCs, NH3, H2S	Less than 1000	500 - 50,000*	Greater than 99%
Chemical Scrubber	Soluble odorous compounds including NH3	Up-to 2000	Greater than 2000 500 - 50,000*	99.9%

2. Plant Description

Plant Description

• Plant was commissioned in 2007 and designated as

Pumping station A7, occupying an area it occupies an area of 42,500 m² (450,000 ft²).

- it is designed to handle 778,000 cubic meter
- of sewage per day (200 MGD) a population of 1.4 million.
- raw sewage enters through the 20-ton inlet gate

that controls the flow, then passes through screens that remove solids and goes into a grit removal system (head works).

 after that the sewage is stored in a reservoir which serves as a buffer tank before the main pumps. Then it is pumped on to WWTP via eight main pumps.

 an odor control system is installed at the headworks comprising wet scrubbers with addition of NaOCL / NaOH, then carbon filters.

Pumping Station A 7

The Station includes:

- main pumps
- primary cleaning equipment
- flow control equipment
- odor control system,
- lifting equipment
- building services
- complete SCADA control system.

Main Pumps

Fig. 1. Main pumping station

Odor Control System

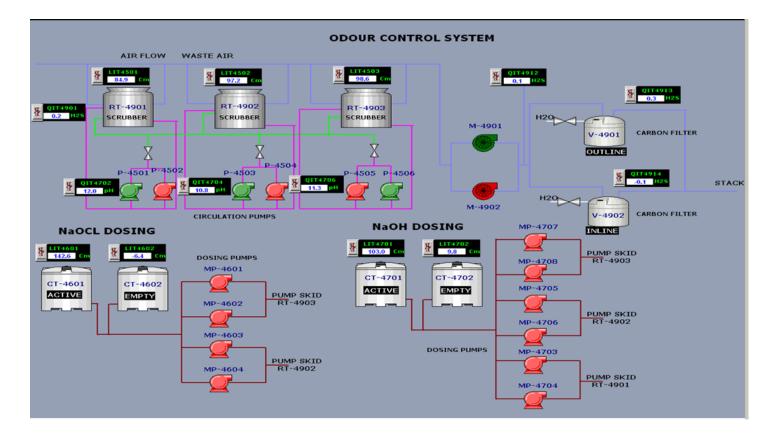
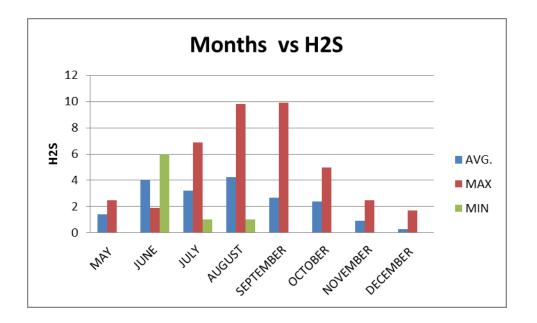


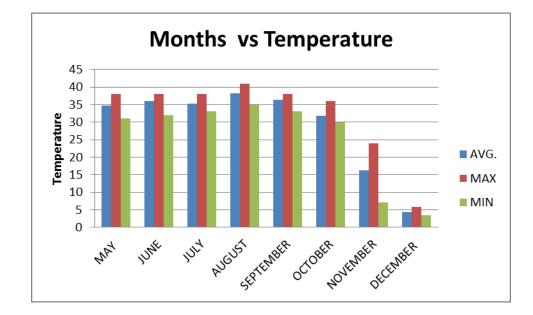
Fig. 2. Odor control system

3. Monitoring Program

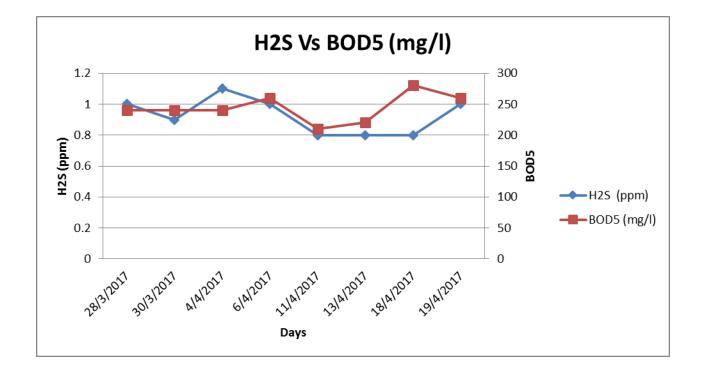
The program lasted for 8 months and included:

- Hourly variations of H2S.
- Daily variations of flow, temperature, BOD, pH, DO, sulfates and sulfides.
- H2S emissions and temperatures from the headworks were continuously monitored at each location by OdaLog units.
- Continuous flow data was obtained from the flow meters installed in the plant.

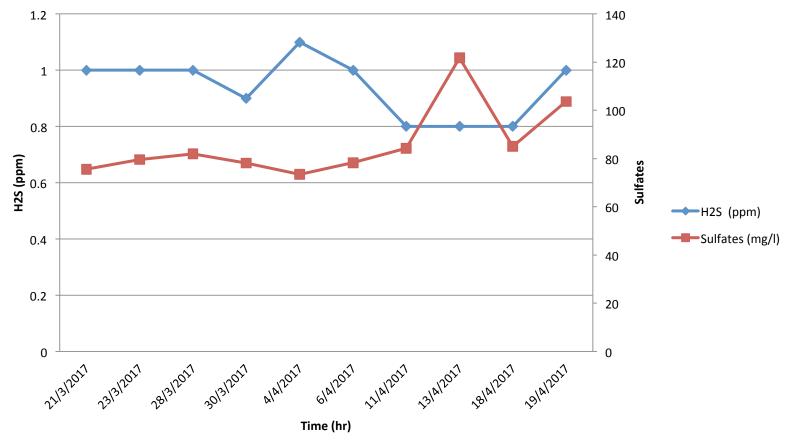




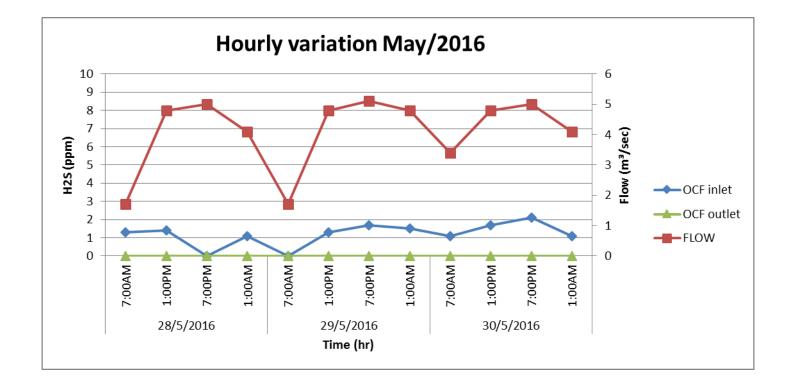
4. Results and Discussion


Monthly Variations in H2S

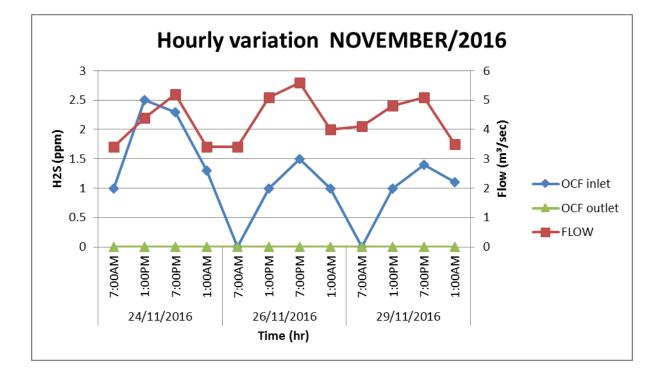
Monthly Variations in WW Temperature

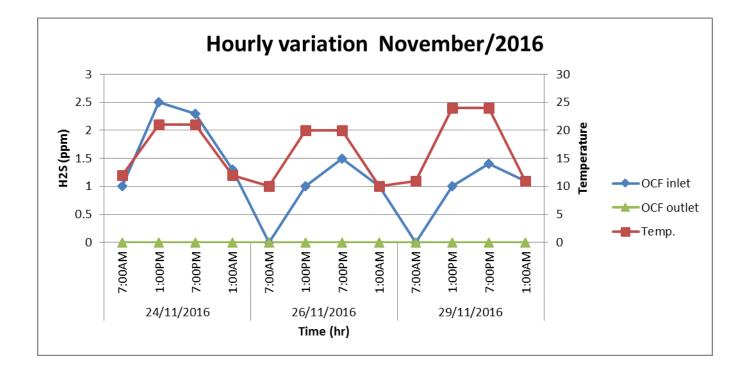


Daily Variations in H2S with BOD



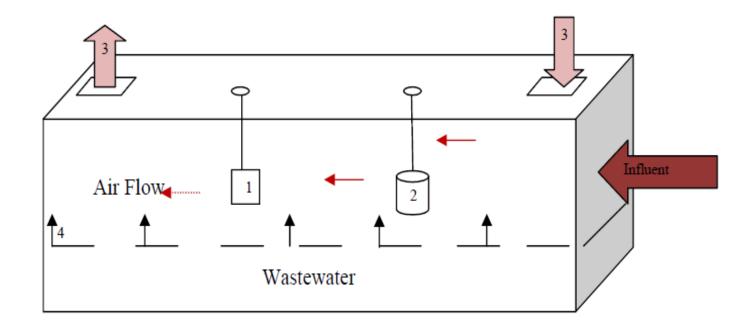
Daily Variations in H2S With Sulfates


H2S Vs Sulfates (mg/l)


Hourly Variations in H2S with Flow Rate

Hourly Variations in H2S With Flow Rate

Hourly Variations in H2S With Temperature



H2S Removal Efficiency

Date, 2016	H2S at Inlet, ppm	H2S at Outlet, ppm	H2S Removal, %
March 21st	3.6	0.03	99.1
March 23rd	2.8	0.02	99.3
March 28th	3.8	0.02	99.5
March 30th	5.2	0.01	99.8
April 4th	2.5	0.01	99.6

H2S Emission Model

Legend: 1) Anemometer, 2) OdorLogger, 3) Air flow in/out of headworks chamber, 4) Air emissions from wastewater source.

Analysis of Data

- •Devising an air monitoring plan for continuously recording H₂S emissions from the influent chamber of the headworks.
- •Developing a plan to document variations in the H₂S emissions over a relatively long period of time rather than estimating based on short term monitoring of few grab samples.
- •Identifying wastewater parameters which have potential to influence H₂S emissions and establishing a wastewater monitoring plan.
- •Arranging the data into useable format for calculating H₂S emission factors.
- •Performing statistical analysis to develop a H₂S model for individual WWTPs headworks and recommend roadmap for establishing a universal model.

Emission Rates of H2S

Independent Variables for the Model: Flow rate; Population; Area Served; WW Temperature (or Ambient Temperature); DO; BOD; Total Sulfides, pH and Hydraulic Retention Time

Dependent Variable for the Model: Emission Rate of H₂S

Emission Factor (EF) for H2S

This section formulates a methodology to calculate emission factors for H₂S. The Ontario Ministry of Environment's "Step by Step Guideline for Emission Calculation, Record Keeping and Reporting for Airborne Contaminant Discharge" published December 2007 (hereby referred to as Emission Guide) has been used as a guidance document to formulate methodology for this research. Figure 4.2 below shows the major steps involved to generate the Emission Inventory for a facility.

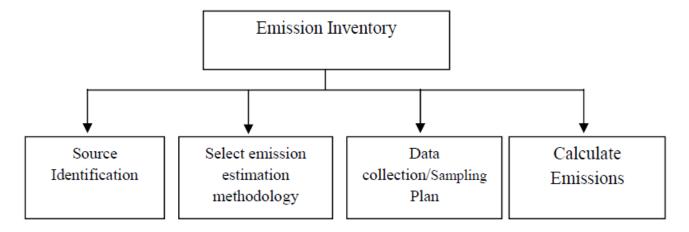


Figure 4.2: Flow Chart Showing Guidelines for Calculating Air Emissions

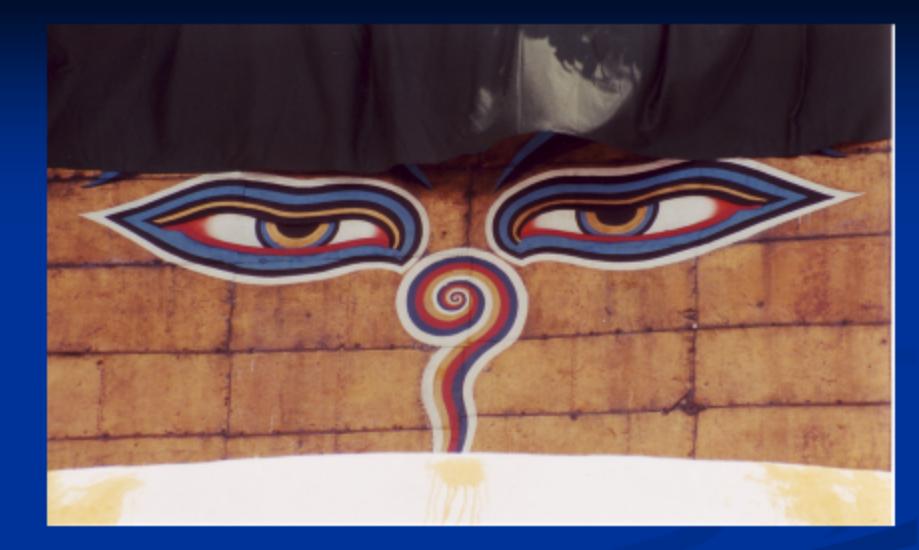
Parameter Estimation

The Parameter Estimate tables were next developed using only the independent variables selected based on results obtained from Pearson's Coefficient Matrix. The software eventually generated the modeling equation and the associated R-Square value.

Results of Parameter Estimation

S tatistical dependency of H_2S emissions on wastewater variables

Row	Variables	EF-Flow	Flow	Temperature	BOD	pН	Total Sulfides
1	EF-Flow	1	-0.69	0.87	0.64	0.07	0.62
			0.0005	<.0001	0.0015	0.7381	0.0022
2	Flow	-0.69	1	-0.53	-0.58	0.009	-0.50
2		0.0005		0.0129	0.0058	0.9669	0.0209
3	Temperature	0.87	-0.53	1	0.50	-0.03	0.55
5		<.0001	0.0129		0.0192	0.8901	0.0087
4	BOD	0.64	-0.58	0.50	1	0.17	0.28
4		0.0015	0.0058	0.0192		0.4511	0.2055
5	pН	0.077	0.009	-0.03	0.17	1	-0.18
		0.7381	0.9669	0.8901	0.4511		0.4268
	Total						
6	Sulfides	0.62	-0.50	0.55	0.28	-0.18	1
		0.0022	0.0209	0.0087	0.2055	0.4268	


Dependence of H2S Emission Factor

According to raw data, Flow (-0.69) was most indirectly proportional and Temperature (0.87) was most directly proportional to the independent parameter EF-Population. Table 5.8 below shows the Pearson's Coefficient Matrix for the Bridge City WWTP sampling location. The matrix shows that flow (0.0005), temperature (<0.0001), BOD (0.0015), and Total Sulfides (0.0022) all have p-values (marked in green) less than 0.05. However, according to the p-values (Row 2), Flow is highly inter-correlated with BOD (0.0058). Some degree of inter-correlation was found between Flow and Temperature and Flow and Total Sulfides (Row 2). However, the model was developed using flow and temperature as the raw data as these two independent variables were recorded more extensively (continuous averages) than the data available for Total Sulfide (weekly grab sample). Also, Flow and Temperature are more correlated to EF-Flow and have a higher impact (-0.69 and 0.87 respectively) on EF-Flow than any other variables. Therefore, modeling was performed using Flow and Temperature, as these variables are correlated to EF-Flow and are least inter-correlated.

5. Conclusion

- The odor control system removed up to 99.9
 % of the H₂S, and eliminated the odor
 nuisance as the H₂S level decreased from 6
 ppm down to almost 0.0005 ppm .
 - Statistical analysis showed a high correlation s between the inlet H_2S concentration and both the inlet wastewater temperature and flow rate. Other variables such as BOD, pH and sulfide concentrations also affected, but to a lesser extent, the H_2S emission factors.

Thank You for your Attention Any Questions ?