
An Economical, Low-Impact Wastewater Collection system

A Case Study of Vero Beach, FL

Background Location

- Vero Beach, Florida
 - Indian River County
- Eastern Florida
- Between Indian River Lagoon and Atlantic Ocean

Background (Continued) Demographics

- Total population: 15,220
 - Densely populated
- Median Household Income: \$51,761
- City is mostly gravity sewer with a centralized treatment plant
 - Large portions of the city use on-site sewers
- Mature vegetation

Background (Continued) Existing Wastewater Management Systems

- 1,500 homes use septic systems
 - Many were antiquated and failing
 - Small parcels
- Environmental concern
- Nutrient runoff into the Indian River Lagoon
 - Excess nitrogen, phosphorus, and bacteria
 - Possibly tied to deaths of manatees and dolphins

Background (Continued) Existing Wastewater Management Systems

Background (Continued) Septic System Variables

- Density (lot size)
- Proximity to lagoon
- Elevation of water table
- Flow direction of groundwater
- Distance from the septic tank to water's edge
- Year house was built (pre-1983 homes are priority)
- Irrigation systems that use shallow wells

Background (Continued) Existing Wastewater Management Systems (Continued)

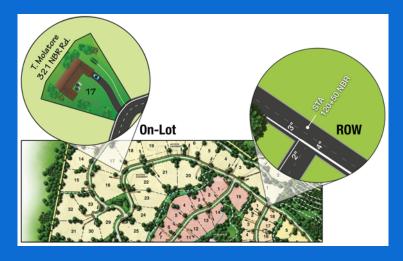
Lot Size (acres)	# of Homes
0.00 - 0.15	4
0.16 - 0.2	3
0.2 - 0.3	82
0.3 - 0.4	38
0.4 - 0.5	18

Evaluation Alternatives

- Collection System Alternatives
 - ~ Gravity
 - Low Pressure Septic Tank Effluent Pump Sewers (STEP)
- Based on preliminary research, City Engineer eliminated grinder and vacuum as viable alternatives

Evaluation *Gravity Sewers Overview*

- 4" or 6" lateral pipe at 1% 2% grade from home to collection main
- Collection main min. pipe diameter is 8", laid at a slope
- Manholes
- Maximum manhole spacing is 400 feet for pipe diameters of 15 inches or less
- Must consider infiltration and inflow


Evaluation *Gravity Sewers Overview (continued)*

- Lift pumps are designed to handle 3" diameter solids
- Force mains must be at least 4" diameter
- Minimum pump flow must be approximately 80 gpm to maintain 2 ft per second velocity
- At least two pumps are required and must be able to pump the peak hourly flow with any one unit out of service

Evaluation Effluent Sewers

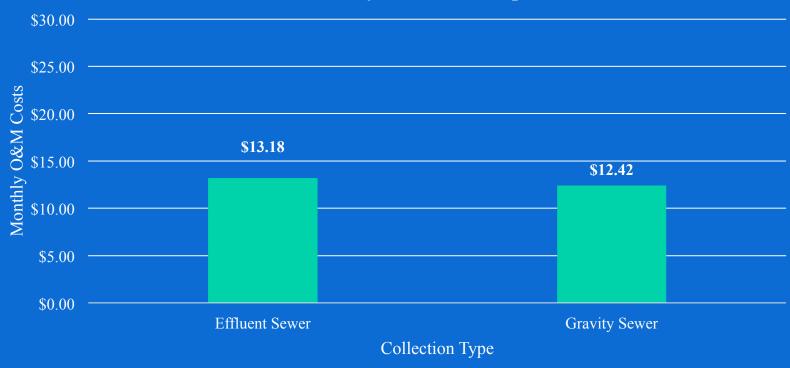
- Small diameter (2"-4" dia.) low pressure sewer mains, buried below frost, laid to contour of land
- Solids are retained and digested in septic tank on site
- Only clear septic tank effluent is pumped to the treatment plant
- Flexible in design

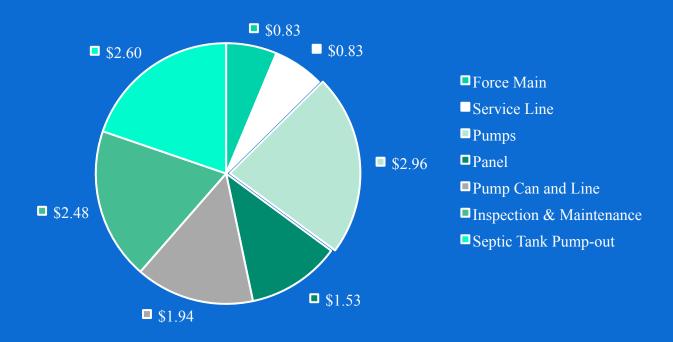
Evaluation *Key Considerations*

- Life Cycle Cost
 - ~ (Present Worth Analysis)
- Availability Cost
 - Cost to construct mainlines, excluding on-lot equipment
- Social Cost

Evaluation (Continued) Life Cycle Economics

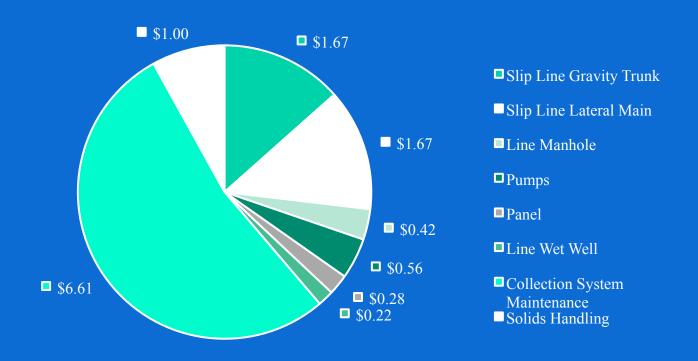
- User charges must include
 - Capital costs and associated debt repayment
 - Yearly O&M costs
 - Repair/Replacement Costs


Evaluation (Continued) Upfront Capital Cost Estimates


Evaluation (Continued) O&M Cost Comparison

Evaluation (Continued) Effluent Sewer O&M Estimate

Estimated O&M Cost/Connection



Operation & Maintenance Estimated O&M Costs

Septic Tank Effluent Pump	
Force Main System	
Force Main Replacement (75 years)	\$0.83
Service Line Replacement (75 years)	\$0.83
STEP Pump System	
Pumps (15 years)	\$2.96
Panel (30 years)	\$1.53
Pump Can and Line to Street (75 years)	\$1.94
Inspection & Maintenance (yearly)	\$2.48
Septic Tank Pump-out	\$2.60
Monthly O&M Cost	\$13.18

Evaluation (Continued) Gravity Sewer O&M Estimate

O&M Cost/Connection

Evaluation (Continued) Present Worth Estimates

Total Life Cycle Cost

Capital Cost O&M Present Worth

Evaluation (Continued) Availability Cost Estimate

Evaluation (Continued) Social Costs

- Social Cost (aka indirect construction cost)
 - Disruption to vehicular traffic
 - Road and pavement damage
 - Potential damage to existing utilities
 - Heavy construction and air pollution
 - Risk of pedestrian safety
 - Tendency for citizen complaints
 - Environmental impact

Evaluation (continued) Past Experience with Gravity Sewer

- In 2004, 60 homes connected to gravity sewer
 - Costs ranged from \$6,200 -\$19,400 per connection
 - Very large construction impact
- In 2007, only 14% of residences supported gravity sewer

Evaluation (continued) Past Experience with Gravity Sewer (continued)

Construction of Gravity Sewer Mains

Dewatering of Open Trench for Gravity Sewer Instllation

Evaluation (Continued) Social Cost (continued)

Directional Drilling of STEP Sewer Mains

Open Trench Excavation of Gravity Sewer Mains

Evaluation (continued) Validating Performance

- Contacted other cities to verify the low costs of an Orenco Effluent Sewer
- Cities/Regional Examples of Orenco Effluent Sewer
 - South Alabama Utilities (3,000 +)
 - Consolidated Utility District of TN (4,000 +)
 - Southwest Barry County (1,000+)
 - ~ Camas, WA (2,900+)
 - ~ Yelm, WA (2,000+)
 - ~ Lacey, WA (4,000+)
 - Missoula, MT (2000+)
 - ~ Glide, OR (1,000+)
- Tens of thousands of connections all over the country in smaller decentralized applications

Funding

- Florida Department of Environmental Protection
 - St. Johns River Water Management District
 - \$540,000 Grant for mainlines and service laterals
- Remaining paid by homeowner, less any credits:
 - STEP Up and Save Credit
 - \$2,290 offered by the city
 - Wastewater Utility Extension Credit
 - \$1,100 offered by the city

Funding (Continued) Estimated On-lot Cost

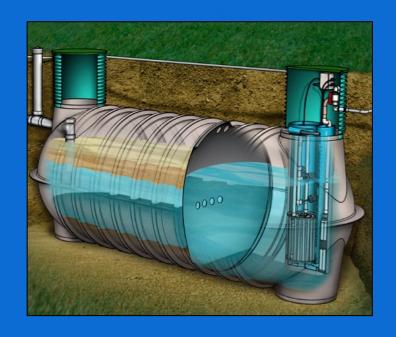
Component	Cost/EDU	
Orenco On-Lot	\$3,000	
STEP	\$5,000	
Service Lateral	\$500	
Tank Installation	\$2,500	
Electrical	\$500	
Connection		
Force Main	\$600	
Total Estimated	\$7,100	
Construction Cost		

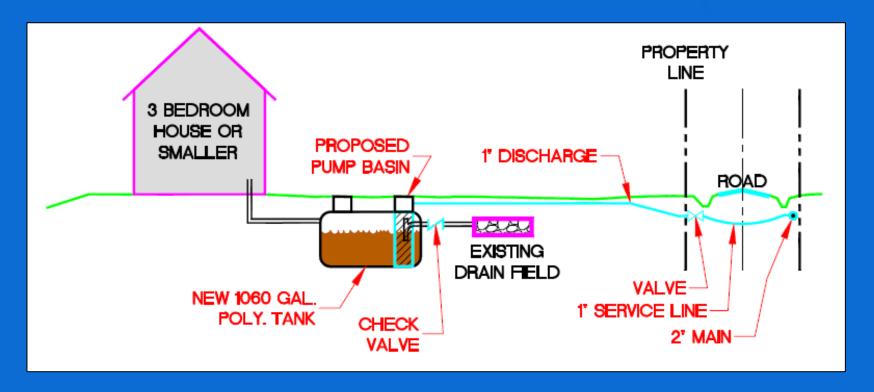
Design Overview

- Selected an Orenco Effluent Sewer pumped to existing centralized treatment plant
- Estimated 1,500 connections will be installed at full build-out
- 93,000 lf of 2" low-pressure, HDPE force mains by project's end

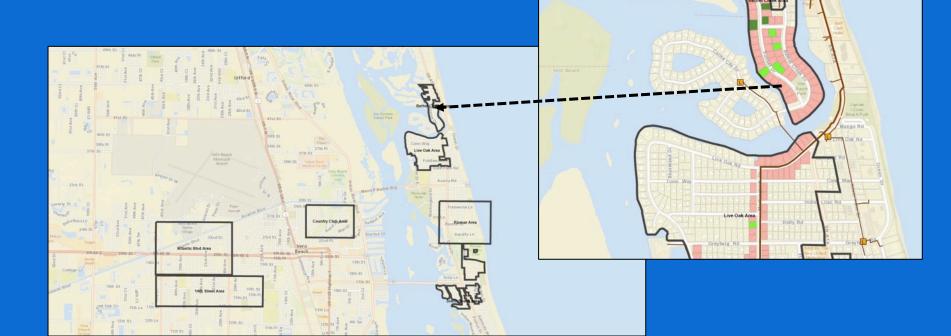
Design (Continued) Collection System Overview

- Septic Tank Effluent Pump (STEP)
 Collection
- Components
 - Watertight tank
 - (1000, 1500, or 2000) gallon
 - Biotube[®] pump vault
 - ~ Effluent screen
 - ~ High head effluent pump, 115VAC, ½ Hp, 10 gpm
 - Control panel
 - Splice box
 - Hose and valve assembly & Floats

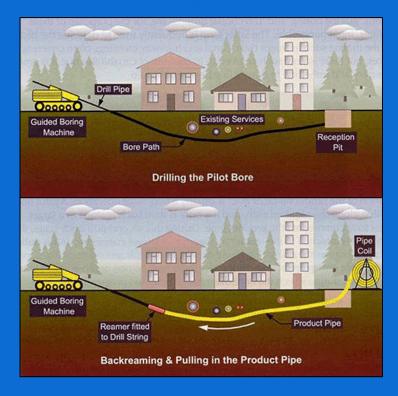




Design (Continued) Collection System Benefits


- Primary treatment in tanks
- 85-95% removal of FOG
- 24-hour emergency storage
- 8-year pump-out interval
- Abuses stay in tank
- Chemical sources easier to identify

Design Collection System Benefits



Design (Continued)
Collection System Service Area

Construction Right of Way Construction

- 2" Diameter HDPE mainlines
 - Directionally bored
- Follow contour of land
- No lift stations
- No manholes
- Largely immune to I&I and leakage

FHWA's "Manual for Controlling and Reducing the Frequency of Pavement Utility Cuts" report; used with permission

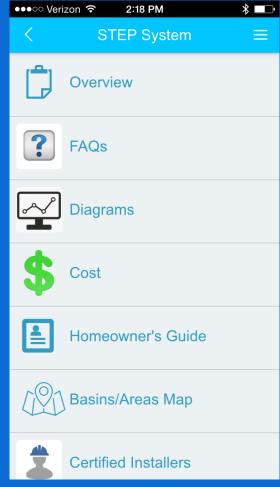
Construction (Continued) On-Lot Construction

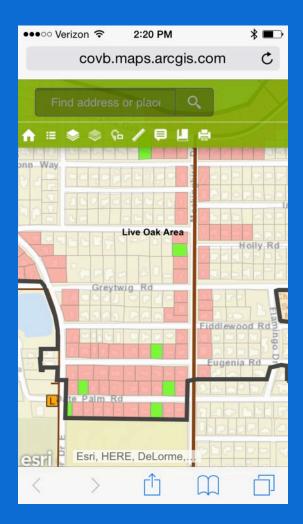
- 1,500 connections
 - 1,000 gallon tanks for residential
 - 1,500 or 2,000 gallon tanks for commercial
- Roth polyethylene tanks
 - ∼ Small excavated footprint (~108 sf)
 - Two risers per tank
- Orenco S1 series panel

Construction (Continued) Estimated Construction Duration

Sewer System	Mainlines	On-Lot Components
Effluent Sewer	~ 6 Weeks	1 - 2 days
Gravity	6 - 9 months	< 1 day

- Directional boring speeds up mainline installation
- 1-2 days for STEP install includes landscape restoration to make surrounding land appear undisturbed


Construction (Continued) On-Lot Equipment Construction and Procurement


- Certified Installers
 - Eliminate incorrect installations
 - Provides homeowners with list of certified contractors
- City purchases and inventories onlot equipment

STEP Cell Phone Application

User Charges

- Residential base rate
 - Max monthly charge of \$55.79/ month/residence
 - Basic charge of \$19.89/month/ residence
 - Plus \$3.59/1000 gallons up to 10,000 gallons
 - Based on water usage meter data
- Initial Costs
 - \$2,425 \$9,550 depending on size of building and if new tanks are needed, typical estimated costs is \$7,100
 - Less any credits mentioned previously

Conclusion

- Cost effective
 - Low capital costs
 - Low O&M costs
- Minimal Construction impact
 - -Low social cost
 - Minimal environmental impact
- Availability Costs
 - Non-mandatory connections
 - Easy to phase in connections

Questions?

Engineered solutions since 1981

Orenco Systems[®], Inc.

<u>www.orenco.com</u>

gespinosa@orenco.com