# Looking Beyond the Levee

#### Nonstructural Flood Mitigation Alternatives

Cindy Baumann, P.E., BCEE, CFM James Michel, P.E.

June 5, 2017





### Outline

- Project History
- Project Summary
- Nonstructural Evaluation
- Recommendations
- Questions

### **Project History**

- Several damaging storm events over the last century
  - **1955, 1972, 2007, 2010**
- Watershed Studies
   Completed between 2007 2010
- Capital Improvement Program (CIP) Prioritization and Ranking
  - 65 Structural Recommendations



# **Project History**

#### Greenwich Watersheds:

- Byram River
- Horseneck Brook
- Brothers Brook
- Strickland Brook
- Mianus River
- Cider Mill Brook
- Old Greenwich
- Coastal Areas



## **Project History**

#### **CIP** Prioritization and Ranking

- 1) Additional Railroad Culverts
- 2) Cos Cob Harbor Diversion Piping
- 3) Stone Arch Bridges Removal
- 4) Sound Beach Avenue/Arcadia Road Storm Drain Replacement
- 5) East Putnam Bridge & Roadway Reconstruction
- 6) Pemberwick Road Erosion Protection
- 7) Church Street Storm Drain Replacement
- 8) Glenville Road Bridge Replacement
- 9) Brookside Drive Diversion Culvert
- 10) Mianus Park Pond Dam Improvements

Byram River Horseneck Brook Brothers Brook Strickland Brook Cider Mill Brook Old Greenwich

#### Project History – Byram River Study



### **Project Summary**

Evaluated the feasibility of nonstructural measures for flood prone areas within each watershed

- Data collection
- Reviewed all structures within flood boundaries for nonstructural recommendations
- Developed conceptual level project costs for nonstructural recommendations
- Compared costs to structural improvements recommended as part of previous studies

#### Nonstructural vs Structural Flood Protection

#### Nonstructural

Alter the impact or consequences of flooding

Adaption to the natural floodplain without changing flood characteristics

Dry Floodproofing Wet Floodproofing Ringwalls Elevation

Acquisition



Alter the characteristics of the flood

Reduce the probability of flooding in the location of interest by changing flood characteristics and limits

Dams Levees Floodwalls

## **Nonstructural Evaluation**

#### **Structure Inventory**

- Structure Type
- Land Use
- Construction
- Condition
- Assessed Value
- Garage
- Foundation
- Ground Elevation
- Main Floor Elevation
- Low Opening



Elevation

#### **Nonstructural Plan**

- Evaluated all 493 structures for the 10, 25, 50, 100 and 500 year storm events
- Recommendations for flood proofing



## Nonstructural Evaluation

- 10, 25, 50, 100 and 500 year storm events
- Algorithm

|     | STREET ADDRESS             | PARCEL<br>PERIMETER<br>(RINGWALL<br>LENGTH, FT) | HEIGHT OF<br>10-YEAR<br>RINGWALL | HEIGHT OF<br>100-YEAR<br>RINGWALL | HEIGHT OF<br>500-YEAR<br>RINGWALL |
|-----|----------------------------|-------------------------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| 11  | Hillside Avenue            | Apart of 13<br>Riverdale<br>Ringwall            |                                  |                                   |                                   |
| 13  | Riverdale Avenue           | 700                                             | 7                                | 13                                | 16                                |
| 15  | Riverdale Avenue           | 100                                             |                                  | 10                                | 10                                |
| 17  | Riverdale Avenue           |                                                 |                                  |                                   |                                   |
| 19  | Riverdale Avenue           | 450                                             | -                                |                                   |                                   |
| 21  | Riverdale Avenue           | 450                                             | 5                                | 11                                | 14                                |
| 23  | Riverdale Avenue           |                                                 |                                  |                                   |                                   |
| 25  | Riverdale Avenue           |                                                 |                                  |                                   |                                   |
| 777 | West Putnam Avenue Lot 48A | 1, 300                                          | 5                                | 12                                | 14                                |

| Structure Type                                                        | Slab-on-Grade Foundation                                                                  |  |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Description                                                           | Structures that are constructed on a slab foundation at grade.                            |  |  |  |  |
| Assumptions                                                           | Structures will not be dry flood proofed for main floor flood depths greater than 2-feet. |  |  |  |  |
| Algorithm                                                             |                                                                                           |  |  |  |  |
| Residential                                                           |                                                                                           |  |  |  |  |
| I. If FE < GE                                                         | then No Flood Proofing Required                                                           |  |  |  |  |
| II. If FE+1 < N                                                       | ME then No Flood Proofing Required                                                        |  |  |  |  |
| III. If FE+1 > N                                                      | ME then                                                                                   |  |  |  |  |
| a. If F                                                               | E+1 > ME+3 then                                                                           |  |  |  |  |
|                                                                       | i. If Poor Condition then Buyout                                                          |  |  |  |  |
|                                                                       | ii. Otherwise Elevation                                                                   |  |  |  |  |
| b. If F                                                               | 'E+1 < ME+3 then                                                                          |  |  |  |  |
|                                                                       | i. If FE+1 < GE+6 then Dry Flood Proofing or Ringwall                                     |  |  |  |  |
|                                                                       | ii. If FE+1 > GE+6 then Dry Flood Proofing                                                |  |  |  |  |
| Nonresidential                                                        |                                                                                           |  |  |  |  |
| I. If FE <ge t<="" td=""><td>hen No Flood Proofing Required</td></ge> | hen No Flood Proofing Required                                                            |  |  |  |  |
| II. If Wood or                                                        | r Metal Construction Type then                                                            |  |  |  |  |
| a. If F                                                               | E+1 < ME then No Flood Proofing Required                                                  |  |  |  |  |
| b. If F                                                               | E+1 > ME then                                                                             |  |  |  |  |
|                                                                       | i. If FE+1 > ME+3 then                                                                    |  |  |  |  |
|                                                                       | 1. If Poor Condition then Buyout                                                          |  |  |  |  |
|                                                                       | 2. Otherwise Elevation                                                                    |  |  |  |  |
|                                                                       | <li>ii. If FE+1 &lt; ME+3 then Dry Flood Proofing or Ringwall</li>                        |  |  |  |  |
| III. If Masonry                                                       | y Construction Type then                                                                  |  |  |  |  |
| a. If F                                                               | E +1 < ME then No Flood Proofing Required                                                 |  |  |  |  |
| b. If F                                                               | E + 1 > ME then                                                                           |  |  |  |  |
|                                                                       | i. If FE+1 > GE+3 then Ringwall                                                           |  |  |  |  |
|                                                                       | <ol> <li>If FE+1 &lt; GE+3 then Dry Flood Proofing or Ringwall</li> </ol>                 |  |  |  |  |

# Wet Flood Proofing

#### What is wet flood proofing:

- Modifying uninhabited portions of the home (i.e. crawlspace or basement) so that floodwaters will enter but not cause significant damage to either the home or its contents
- Reduces risk of structural collapse as hydrostatic pressures are allowed to equalize

- Requires space above the base flood elevation (BFE) to store items temporarily or permanently
- Any service equipment, such as furnaces and water heaters, below the BFE should be protected by either moving the equipment to another floor, elevating it, or protecting it in place
- Building can not be occupied during a flood, and will require water to be removed after the event







# **Dry Flood Proofing**

#### What is dry flood proofing:

- Sealing your home to prevent floodwater from entering.
- Not recommended for flood depths greater than 3-feet.



- Seal walls with waterproof coatings, impermeable membranes, or supplemental layers of masonry or concrete.
- Shield all openings, such as doors and windows, below the BFE.
- Requires human intervention.
- For homes with basements it is recommended to use wet flood proofing in conjunction with dry flood proofing.





## Ringwalls

#### What are ringwalls:

- Building a ringwall, such as a floodwall or levee, around your home to hold back floodwaters.
- Can surround a home or protect isolated openings such as doors, windows, and walkout on-grade basements depending on flood depths, site topography, and design preferences.
- Primarily recommended for commercial properties or larger multi-family properties

- The home and the area around the home will be protected from inundation, and no significant changes to the home will be required.
- No damages will be caused through inundation, hydrodynamic pressure, erosion, scour, or debris impact.
- Ringwalls should be designed for an elevation equal to the BFE.







## Elevation

#### What is elevation:

- Raising a home to prevent floodwaters from reaching living areas.
- Construct new or extended foundation or elevate on fill, piles, or columns.

- House must be structurally sound.
- Homes with basement will require it to be filled as part of elevation.
- Space below a house on an open elevation can be utilized for parking.
- ACOE typically recommends the property to be raised above the BFE.



# Nonstructural Studies

Byram River Horseneck Brook Strickland Brook Cider Mill Brook



### **Byram River**

#### Alternatives

- No action
- Structural Levee and floodwalls
- Nonstructural
- Bridge replacement
- Combinations

#### Benefit Cost Ratio (BCR)

- ACOE performed a BCR analysis for each alternative
- Two projects yielded a BCR greater than 1.0
  - 10-Year Nonstructural Plan
  - Route 1 Bridge Replacement

Alternatives are being presented to Residents

#### Byram River – Nonstructural Recommendations



### Byram River – Nonstructural Recommendations

#### **10 Year Storm Event**

|                   | Flood Proofing Measure |     |          |           |             |  |
|-------------------|------------------------|-----|----------|-----------|-------------|--|
| Structure Type    | Dry                    | Wet | Ringwall | Elevation | Acquisition |  |
| Slab-on-Grade     | -                      | -   | 4        | 1         | -           |  |
| Subgrade Basement | 4                      | -   | 1        | 18        | 1           |  |
| Elevated          | -                      | -   | -        | -         | -           |  |
| <b>Bi-Levels</b>  | -                      | -   | -        | 1         | -           |  |
| Raised Ranch      | -                      | 1   | -        | 7         | -           |  |
| Raised Foundation | -                      | -   | -        | 1         | -           |  |
| Split Level       | 1                      | -   | -        | 1         | -           |  |
| Large Residential | -                      | -   | 6        | -         | -           |  |
| Total (47)        | 5                      | 1   | 11       | 29        | 1           |  |

#### 100 Year Event

| Chrysophure Turne | Flood Proofing Measure |     |          |           |             |  |
|-------------------|------------------------|-----|----------|-----------|-------------|--|
| Structure Type    | Dry                    | Wet | Ringwall | Elevation | Acquisition |  |
| Slab-on-Grade     | 4                      | -   | 4        | 2         | -           |  |
| Subgrade Basement | 34                     | 55  | 1        | 28        | 1           |  |
| Elevated          | 1                      | -   | -        | -         | -           |  |
| <b>Bi-Levels</b>  | 1                      | 1   | -        | 1         | -           |  |
| Raised Ranch      | 6                      | 28  | -        | 15        | -           |  |
| Raised Foundation | -                      | 2   | -        | 3         | -           |  |
| Split Level       | 1                      | 7   | -        | 1         | -           |  |
| Large Residential | -                      | -   | 6        | -         | -           |  |
| Total (202)       | 47                     | 93  | 11       | 50        | 1           |  |

### Byram River – Bridge Replacement

# Flood depth reductions up to 4.6 feet (100 year)

- Brings the 100 year elevations just below the 25 year existing
- Significant cost benefits from decreases in flood damages



### Cider Mill Brook

- Drainage System Evaluation (2009)
- Recommended Plan for the 25-Year Storm Event
  - Installation of twin 10-foot by 6-foot culverts under the railroad
  - Replacing the existing culvert under East Putnam Avenue

#### CIP Prioritization Railroad Culverts

| Table | 3.3 – | Summary | of Reco | mmended | Plan |
|-------|-------|---------|---------|---------|------|
|       |       |         |         |         |      |

| Improvement                                          | Recommended |
|------------------------------------------------------|-------------|
| Binney Park Improvements (3.1.1)                     | J.          |
| East Putnam Avenue Improvements (3.1.2)              | V.          |
| Palmer Hill Road Improvements (3.1.3)                | 1           |
| Specific Structure Maintenance (3.1.4)               | 1           |
| Harding Road Improvements (3.1.5)                    |             |
| Upstream Structures and Channel Improvements (3.1.6) |             |
| Storage Areas (3.1.7)                                |             |

- Nonstructural Plan
- Hybrid Plan

| Table 3.4 – Summary | of Project Costs |
|---------------------|------------------|
|---------------------|------------------|

| Binney Park Improvements – Railroad Culvert         | \$ 4,300,000  |
|-----------------------------------------------------|---------------|
| East Putnam Improvements - Route 1 Culvert          | \$ 2,300,000  |
| Palmer Hill Improvements - Roadway Culvert          | \$ 500,000    |
| Specific Structure Improvements - Culvert Clearings | *             |
| Opinion of Probable Construction Cost               | \$ 7 100 000  |
| 25% Contingency                                     | \$ 1,800,000  |
| Engineering and Implementation Costs (25%)          | \$ 2,200,000  |
| Opinion of Probable Project Costs                   | \$ 11 100 000 |

Note: Land costs/easements not included, costs are 2011 dollars with 7% inflation rate. \* Culvert cleaning costs have not been included. It has been assumed that the Town of Greenwich DPW Staff will perform the cleaning.

## Cider Mill Brook – Structural Recommendation

#### Railroad culvert replacement

- Reduced 100-year storm flood depths as much as by 4.5-ft
- Location of relief culvert under the railroad
- Flood mitigation on Arch Street during the 25-year storm to allow emergency access

Conceptual Cost: \$6,720,000



# Cider Mill Brook – Nonstructural Recommendations

| Table 2 Cider Mill Brook Nonstructural Flood Protection Recommendations |    |    |    |    |  |
|-------------------------------------------------------------------------|----|----|----|----|--|
|                                                                         |    |    |    |    |  |
|                                                                         |    |    |    |    |  |
| No Action Required                                                      | 39 | 32 | 21 | 14 |  |
|                                                                         |    |    |    |    |  |
| Dry Floodproofing                                                       | 19 | 25 | 29 | 31 |  |
| Wet Floodproofing                                                       | 10 | 11 | 16 | 21 |  |
| Ringwall                                                                | 3  | 3  | 3  | 3  |  |
| Elevation                                                               | 13 | 13 | 15 | 15 |  |
| Acquisition                                                             | 0  | 0  | 0  | 0  |  |
|                                                                         |    |    |    |    |  |
| Total Number of Structures Requiring Flood                              |    |    |    |    |  |
| Protection Measures                                                     | 45 | 52 | 63 | 70 |  |

#### Elevation

- 13-15 Properties
- Increases costs

# 100 year nonstructural recommendations - \$7.2M



### Cider Mill Brook – Hybrid Plan

Bridge Replacement at Sound Beach Avenue

- Roadway Raising
- \$1M bridge replacement project
- Nonstructural considerations for individual properties

### **Conceptual Costs**

Developed using the Army Corps of Engineers average unit costs for nonstructural improvements developed and included in the Byram River Feasibility Study

| Storm Event                  | Byram River | Cider Mill Brook |
|------------------------------|-------------|------------------|
| 10-Year                      | \$18M       | \$4.9M           |
| 25-Year                      | \$29M       | \$5.7M           |
| 50-Year                      | \$36M       | \$6.6M           |
| 100-Year                     | \$41M       | \$7.2M           |
| Structural<br>Recommendation | \$91M       | \$6.7M           |
| Bridge Replacement           | \$23M       | \$1.0M           |

### Recommendations

**Byram River** 

- Nonstructural alternative being considered (10 Year Storm)
- Route 1 Bridge Replacement is preferred but more complex

#### Cider Mill Brook

- Nonstructural recommendations are not cost effective
- Nonstructural (50-year) had similar conceptual costs to the relief culvert
- Nonstructural recommendations do not address roadway flooding, emergency access and public safety
- Hybrid plan: roadway improvements and nonstructural with considerable cost savings

### Summary

#### Importance of including cost benefit analysis

- Damages need to be included
- Benefits (reduction of damages) need to out way the costs (BCR > 1)

#### Nonstructural improvements

- Do not impact the natural floodplain
- Elevation and acquisition significantly increase nonstructural costs
- Can be cost effective Byram River
- Hybrid plans need to be considered Cider Mill Brook
- Nonstructural not applicable Horseneck Brook (emergency access)

Need to address emergency access and roadway flooding

- Critical public safety rating
- Emergency access routes and emergency facilities



# Questions?