PACP[®] Based Asset Management

Presented by:

Laurie Perkins, PE

Objectives of Asset Management

- Maintain function or level of service as cost effectively as possible
- Maintain individual components (assets) at lowest life cycle cost possible

Asset Management in Wastewater Systems

Key Asset Management questions:

- What types of assets do we own?
- Where are they located?
- What is the condition?
- Which are critical?
- What are my best O&M and CIP investment strategies?
- What are costs? Impact to budget?

PACP in Asset Management

PACP can assist in developing an asset management plan by collecting asset information such as:

- Pipe segment length
- Relative location details
- Pipe size, shape, material
- Upstream manhole data
- Consequence of failure
- Defect codes (Structural and O&M)
- Condition grades

General Information										
1. Surveyed by	2. Certific	ate No.			3. Reviewed by	4.Reviewer Certificate No.				
5. Owner	6. Custon	ner			7. P/O Number	8. Work Order Number				
9. Media Label	10. Proje	ct	11. Date		12. Time	13. Sheet Number				
14. Weather	15. Pre-C	leaning	16. Date Clear YYYMMI	ned DD	17. Flow Control	18. Purpose of Survey				
19. Direction of Survey	20. Inspe	ction Technol	ogy Used		21. Inspection Status					
22. Consequence of Failu	ire		23. Pressure	23. Pressure Value						
Location	•				•					
24. Drainage Area	25. Pipe S	Segment Refe	erence		26. Street (Name & Number)					
27. City	28. Locat	ion Code			29. Location Details					
Pipe										
30. Pipe Use	31. Heigh	t		32. Widt	h	33. Shape				
34. Material	35. Lining	Method		36. Coat	ting Method	37. Pipe Joint Length				
38. Total Length	39. Lengt	h of Pipe Sun	veyed	40. Year	Constructed	41. Year Renewed				
Measurements					· · ·					
42. Upstream MH Number	43. Upstre	am MH Rim t	o Invert 44.Up	stream M	H Rim to Grade 45	Upstream MH Grade to Invert				
46. Upstream MH Northin	g	47. Upstrear	m MH Easting		48. Upstream MH	Elevation				
49.Downstream MH Numb	er	50.Downstre	am MH Rim to	Invert	51.Downstream MH Rim to Grade					
52. Downstream MH Grad	e to Invert	53. Downstre	eam MH Northi	ng	54. Downstream MH Easting					
55. Downstream MH Elev	ation	56. MH Coo	rdinate System	1	57. MH Vertical D	atum 58. GPS Accuracy				
59 Additional Information										

Red = Mandatory; Black = Non-mandatory

Risk in Asset Management

Risk = Calculation that takes into account

- Likelihood of something bad happening and
- Severity of *consequence(s)* of failure

Likelihood of Failure (LoF)

- PACP condition grades can determine segment scores
- Segment scores can be used to calculate Likelihood of Failure for pipelines
- The *Modified PACP Quick Rating* based upon highest grade defect observed within a particular pipe segment

PACP Condition Grading System

PACP Grading System for Pipelines, Manholes and Laterals

- 5 Most significant defect grade
- 4 Significant defect grade
- 3 Moderate defect grade
- 2 Minor to moderate defect grade
- 1 Minor defect grade

Pipe Rating System

Likelihood of Failure Rules

An asset's Likelihood of Failure is determined based on the following scenarios:

- No condition assessment data is available
- Condition assessment data is available and there are no defects
- There are no more than 9 occurrences of the highest condition grade
- The second character is a letter (indicating more than 9 occurrences)

In all cases we divide the first two digits of the quick rating by 10 LoF assigned on a scale of 1-6

Consequence of Failure

Triple Bottom Line

Economical Impacts

- Impact of Direct and Indirect economic losses
 - Direct costs
 - Asset Repairs
 - Legal Fees
 - Fines
 - Indirect costs
 - Property Values
 - Increased Insurance Rates
 - Utility's Credibility

• Typically expressed in dollars and include property damage, repair cost, production loss, etc.

Social Impacts

- Impact on Society due to asset failure
- Factors include
 - Number of properties/clients affected
 - Types of affected properties (hospitals, schools, businesses, parks, "critical services", etc.)
 - Duration of Failure
 - Utility's Credibility
 - Public Health and Safety

 In addition, there must be consideration for safety issues (i.e. public exposure to health-threatening problems, injuries, or even fatalities)

Environmental Impacts

- Impact to ecological conditions occurring as a result of asset failure
- Environmentally cost considerations based on
 - Proximity to wetlands and waterways
 - Federal Emergency Management Agency (FEMA) flood zones
 - Possible contamination of potable water sources
 - Sensitivity of nearby soils

 60 inch combined trunk sewer 100 feet downstream of a Combined Sewer Overflow (CSO) that crosses a body of water

 8 inch sanitary sewer at the upstream end of the system that only serves one resident

Rating Methodology

- Considers *locational* and *demographical* information
 - Network position
 - Location of pipe
 - Proximity to environmentally sensitive features
 - Service to customer of significant importance
 - Accessibility for maintenance and inspection
- GIS can help determine these considerations
- CoF assigned on a scale from 1 to 6

CoF Examples

- CoF Factors and Examples
 - Pipe depth
 - Pipe diameter
 - Distance between pipe and waterway
 - Customers of high importance
 - Others: Network Position, Asset Location, Accessibility

The system owner must decide upon CoF factors and weighting

Typically an *economic* consideration since deeper pipe is generally more expensive to repair/replace

Depth	CoF Factor
Less than 6'	1
≥ 6' - < 10'	2
≥ 10' - < 14'	3
≥ 14' - < 18'	4
≥ 18' - <24'	5
≥ 24'	6

* Assets with no CoF assigned shall be given a value of 0 (zero)

Pipe Diameter

- Affects *Economic, Environmental* and *Social* costs
- Larger diameter pipes generally
 - Serve more customers
 - Cost more to rehabilitate

Diameter	CoF Factor
Less than 8"	1
≥ 8" - < 10"	2
≥ 10" - < 15"	3
≥ 15" - < 21"	4
≥ 21" - <30"	5
≥30"	6

* Assets with no CoF assigned shall be given a value of 0 (zero)

Proximity to Environmentally Sensitive Features

- Consequence of Failure factor is set based on the distance between a pipe and an environmentally sensitive feature
- Factor affected by the nature of the sensitive environment
- GIS can be set-up to assign
 CoF based on distance to environmentally sensitive features

Critical Customers

- Hospitals, schools, manufacturing facilities, emergency services, etc., as determined by utility
- Providing uninterrupted service to these facilities may be a priority for the utility

GROUFF-MILL CREEK	CAME	Service to customer of significant importance
Distance between downstream pipe to a service lateral for customer with high importance (in m)	CoF Factor	
20,000 LF or more	1	CRUND
15,000 - 20,000 LF	2	
10,000 -15,000 LF	3	
5,000 - 10,000 LF	4	
1,000 - 5,000 LF	5	
Less than 1,000 LF	6	

Consequence of Failure Computation

Weighting Eactor	Economic	Social	Environmental			
	1/4	1/4	1/2			
Network Position						
Diameter (12")	3	3				
Depth (9')	2					
Location of Pipe						
Collector road	4	4				
Proximity to sensitive environment						
40' from creek			5			
Serves important customer						
2 miles downstream of hospital		3				
Accessibility						
Needs Traffic Control	2					
TOTAL	11	10	5			
TOTAL(SUM) / POSSIBLE (6*#)	11/24 = 0.458	10/18 = 0.555	5/6 = 0.833			
WEIGHTED (TOTAL * Weighting Factor)	0.458 * 1/4 = 0.115	0.555 * 1/4 = 0.139	0.833 * 1/2 = 0.417			
COF = SUM(of WEIGHTED)*6	<u>4.03</u>					

PACP Inspection Form - Header Section

General Information	Red font fields = Mandatory, Black font fields = Optional									
1. Surveyed by	2. Certificate No.			3. Reviewed by	4.Reviewer Certificate No.					
5. Owner	6. Customer			7. P/O Number	8. Work Order Number					
9. Media Label	10. Project	11. Date	rymmdd	12. Time HH:MM	13. Sheet Number					
14. Weather	15. Pre-Cleaning	16. Date		17. Flow Control	18. Purpose of Survey					
19. Direction of Survey	20. Inspection Technolo	nter Cons alue in Fi	sequence of Failure ield 22 of the PACP							
22. Consequence of Fail	ure	2 Ins	pection F	Form Header	c Section					
4.	03									
Location										
24. Drainage Area	25. Pipe Segment Ref	ference		26. Street (Name & Number)						
27. City	28. Location Code			29. Location Details						
Pipe										
30. Pipe Use	31. Height (Diameter)		32. Width		33. Shape					
34. Material	35. Lining Method	36. Coating	Method	37. Pipe Joint Length						
38. Total Length	39. Length Surveyed		40. Year Co	nstructed	41. Year Renewed					

PACP®-Based Risk Management

- Risk matrix provides a basis for a maintenance and rehabilitation program
- Overall risk a function of LoF and CoF

Engineering a Better Environment

- 0, LoF or CoF a data gap, promptly collect information
- Green area assets with lower risk
- Red area assets with higher risk; resources should be focused on rehabilitating assets that fall in the red area
- Non-zero risk scores can be used to prioritize projects

Sample Asset Management Plan

Collect asset condition information

Up	Dn				Rehab	Rehab			Mate	Observed					Rehabilita	Later	Projected
мн	мн	Street	Loc Code	Year Laid	Yr	Meth	LE	DIA	rial	Defects	QOR	LOF	COF	RISK	-tion	-als	Cost
A00 1	т01 2	Lake O' Odonell Rd.	Light Highway	1921	1980	Slip Line	356	10	PE			0	3	0		2	
A00 2	A00 1	Easement Ball Park Rd.	Easement/ Right of Way	1921			92	10	VCP	\bigcirc		0	m	0			
A00 3	A00 2	University Esmt	Easement/ Right of Way	1921	2004	Pipe Burst	188	10	PE	15% MWLS	2100	2.1	2.5	5.8			
A00 4	A00 3	Solace M Freeman	Easement/ Right of Way	1921	2004	Cured In Place	220	10	FRP	MWL (50%) DAGS	2100	2.1	3.0	6.3	Clean Line		<mark>\$44</mark> 0
A00 5	A00 4	Solace M Freeman	Main Collector Highway	1921	2004	Cured In Place	223	10	FRP	30% MWLS DAGS	2400	2.4	4.0	9.6	Clean Line		\$1000
A00 6	A00 5	Alabama Esmt	Easement/ Right of Way	1921	2004	Cured In Place	410	10	FRP	DAGS, JOL stopped TV @343 ds. Reverse complet ed	4100	4.1	2.8	11.5	Point Repair Clean Line	2	\$4,819
A00 7	A00 6	Sollace M Freeman Esmt	Easement/ ROW - 60 ft from stream	1969			359	10	VCP	MWL (40%), FL, CM, MCU, BVV	5141	5.1	4.4	22.4	Pipe Burst		\$18,668
B00 1	A00 7	Sollace M Freeman Esmt	Easement/ ROW - Upstream end of System	1969			253	8	VCP	MWL (20%), TFD, FM, CM	4432	4.4	2.1	9.2	Pipe Burst		\$11,623

Graph this data to help set priorities

Managing Asset Risk (Examples)

Successful Asset Management Results

- Shift from emergency response to strategic risk-based management of critical assets
- Reduce the number of asset failures
- Minimize the negative impacts of failures when they occur
- Improve performance & reliability of the system
- Manage O&M costs more accurately

Questions / Discussions

More Information

Wright-Pierce

Laurie Perkins, PE

Laurie.Perkins@wright-pierce.com

NASSCO

NASSCO, Inc.

410-442-7473

www.nassco.org

