

Perfecting Your Pumps - Pump
System Optimization
Jessica Dzwonkoski JKMuir

Pumping Energy

Benefits of Assessments

Dlectrical motors in North American industrial electricity usage = 66% with pumping systems accounting for 25%

Electrical usage with wastewater pumping systems
$=20-30 \%$ of total consumption

Dlectrical usage with water pumping systems $=4.6 \%$

DOE Standards for Pump Efficiency - Final Rule

- Clean Water Pumps
- Finalized in Jan 2016
- Defines Pump System Efficiency Testing Procedure
- What efficiencies need to be met
- How to define the efficiencies
- $1^{\text {st }}$ Rule related to Pump System Efficiency
- Measures efficiency at varying loads
- Compliance begins in 2020

What The DOE Rule Does NOT Do:

- Prevent oversizing
- Control where on the curve pump operates (BEP)
- Address pump throttling
- Correct for misapplication of pumps
- Reduce friction loss
- Impact motor efficiency
- Improve system controls
- Control wear

What Affects Pump Performance

- Hydraulic and System Conditions
- Valves
- Piping
- Elevations
- Operational Sequencing
- VFD Operation
- Best Efficiency Point (BEP)
- Pump Efficiency
- Impeller modifications
- Wear

Hydraulic and System Conditions

Change is Hydraulics

- Wetwell level
- Changes in level impact the suction pressure
- System Pressure
- Changes in tank or distribution systems impact the static head

- System Changes
- Less flow or head than design

Operational Sequencing - VFD Operation

Pump Hydraulic Efficiency vs System Head

Pump Efficiency

What Impacts Pump Efficiency

- Hydraulic and System Conditions
- Operational Sequencing
- Wear and Tear from operation
- Impeller
- Wear rings
- Clearances Increase
- Tolerances Change

How Can Pump Efficiency Be Restored

- Pump Rebuilds/ Replacements
- Application of Interior Coatings
- VFD Installation
- Head and Flow reduction
- Move the operating point closer to BEP
- System Configuration
- Piping Modifications
- Setpoint Modifications

What is Pump Efficiency

What are the Important Factors

- Using Portable Instrumentation
- Flow
- Pressure
- Power

Pump Efficiency Testing App

- Offers Real Time Efficiency
- Aids in Cross Validation
- Can this be integrated into existing SCADA?
- Compare Field Readings with Original Design Information to Determine Best Opportunities

National Grid Pumping System Optimization

- Assess Pumping Systems to Determine Room for Improvement
- Detailed analysis and field measurements to establish baseline operating conditions
- Any maintenance concern - what are they telling us
- Existing water and wastewater pumping systems
- Hydraulic Changes
- System Conditions
- Pumping Efficiency
- Potential Benefits from applying Ceramic Based Interior Coating
- Increased Pump Efficiency?
- Increase in Longevity of Restored Efficiency?
- Funding
- Providing incentives not straight forward
- Utilities want to fund these projects

Case Studies

Webster Wastewater Treatment Plant

Site Conditions

- 3 Influent Pumps
- 60 HP, 32', 5,000 GPM
- Maintaining Wetwell Level
- Operation
- Lead/Lag Operation of One Pump
- Typically one pump in operation
- Existing Efficiency $=46 \%$
- Manufacturers Efficiency $=83 \%$

Maintenance

- Regular/ Normal Maintenance Requirements
- No Concerns
- Not always an indication of reduced efficiency

Pump Hydraulic Efficiency vs System Head

Webster Wastewater Treatment Plant

ECM - Rebuild all Three Pumps

- Efficiency $=70-85 \%$
- Savings $=\$ 6,945$ per year in electrical costs
- Project Cost $=\$ 43,200$
- Payback = 6.2 Years

Fall River Drinking Water Treatment Facility

Site Conditions

Maintenance

- 4 Finished Water Pumps - Three Different Sizes
- Pumps 1,2-250 HP, 2,800 GPM, 190'
- Pump 3 - 250 HP, 4,200 GPM, 190'
- Pump 4 - 500 HP, 8,400 GPM, 189'
- Maintaining System Pressure
- Between 68 and 75 PSI
- Motor on one of the pumps overheating
- Found to be operating within the service factor
- Reduced flowrate due to wear of pumps causing chemical dosing issue
- Operation
- Constant speed operation of 2, 250 HP pumps
- Existing Efficiency = 60\%
- Manufacturer Efficiency $=82 \%$

Pump Hydraulic Efficiency vs System Head

Gardner Drinking Water Treatment Facility

Site Conditions

- High Service Pumps
- 100 HP, 240’ TDH, 1,043 gpm
- Two pumps operate at a constant speed to fill two service tanks
- Existing Efficiency $=45 \%$
- Manufacturers Efficiency $=80 \%$

Maintenance

- No issues at this site
- Maintenance Not Always an indication of Efficiency Loss

What happens when we operate outside BEP

High temperature rise

Pump Hydraulic Efficiency vs System Head

Gardner Drinking Water Treatment Facility

ECM - Pump Rebuild and VFD

Installation

- Pumps to be rebuilt
- Under the rebuilt conditions the pumps would be operating outside of their BEP
- Install VFD to reduce speed/Q to get the pump back into BEP
- \$33,824 annual electric savings

- Project Cost $=\$ 145,418$
- Payback $=4.3$ years

What's Next

- Hydraulic Institute (HI)
- Pump Efficiency Testing Standards
- Certification for Pump Testing Professionals (PSA)
- Masters Certification in Pump System Assessment
- Coatings/materials to improve performance
- Monitoring: real time feedback
- Smart grid
- Internet of things
- Program v. one time replacement
- Asset Management, Capital Improvements, Commissioning
- Utility support \& customer/end user out reach

