NATURAL SYSTEMS UTILITIES

Disruptive Tech: Beyond Net Zero Energy Onsite Water Reuse Presented by: Zach Gallagher, PE & Bruce Douglas, PE

New Jersey Office-HQ

2 Clerico Lane, Building 1 Hillsborough, NJ 08844

New England Office

21 Father DeValles Blvd, Suite 107 Fall River, MA 0272321 Father

Western Office

477 Devlin Road, Suite 107 Napa, CA 94558 **Central Office**

17818 Hwy 65 NE, Suite 100 Ham Lake, MN 55304

"...A Better Way"

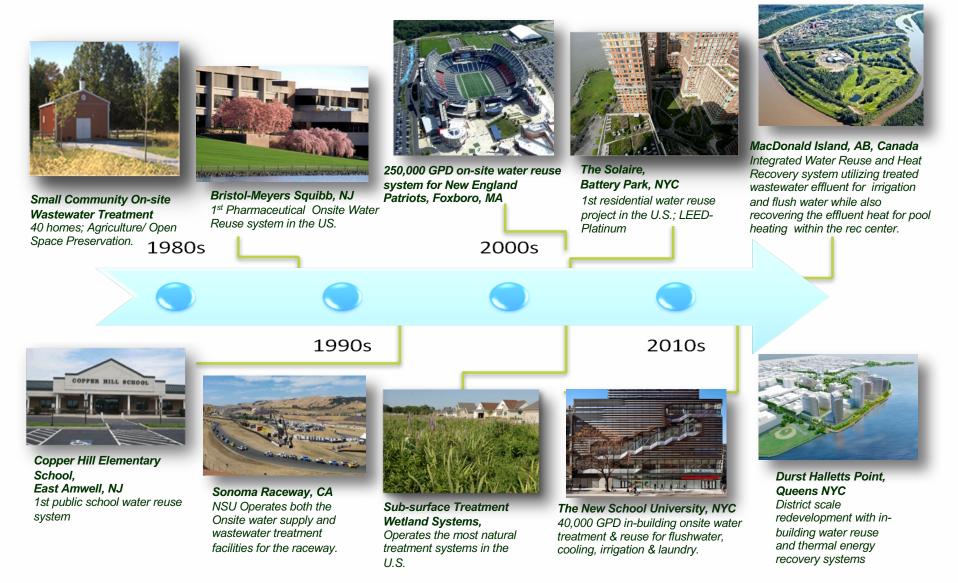
NSU consistently develops A Better Way to create value where others see waste.

NSU Introduction

Emerging Drivers for Water Reuse & The Water-Energy Nexus

In Building Water Reuse & Thermal Energy Recovery: Battery Park City Case Study & Video Tour

Macdonald Island Water Reuse & Thermal Energy Recovery Case Study



Conclusion: Onsite Water Reuse Economics

NSU 30+ Year History Of Onsite Water Treatment & Reuse Solutions

Onsite Water Treatment & Reuse

New Drivers Are Emerging

Demand & Supply: Increasing Population & Inefficient Use

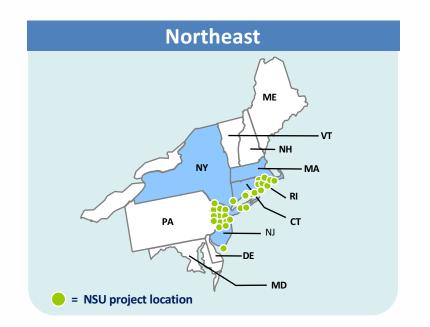
- >7 billion today, estimated 9 billion by 2050
- Water use has been increasing at more then twice the rate of population growth over the last century
- Agriculture accounts for 70% of the total use
- Pollution & Lack of Centralized Sewer Services
 - Large percentage of the worlds cities still dump raw sewage into their waters
- Aging Infrastructure

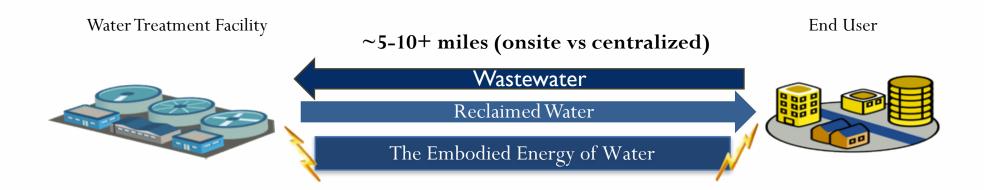
Growing Demand for Increased Resiliency

Green Building Initiatives & Resource Recovery

Increasing Water & Sewer Costs

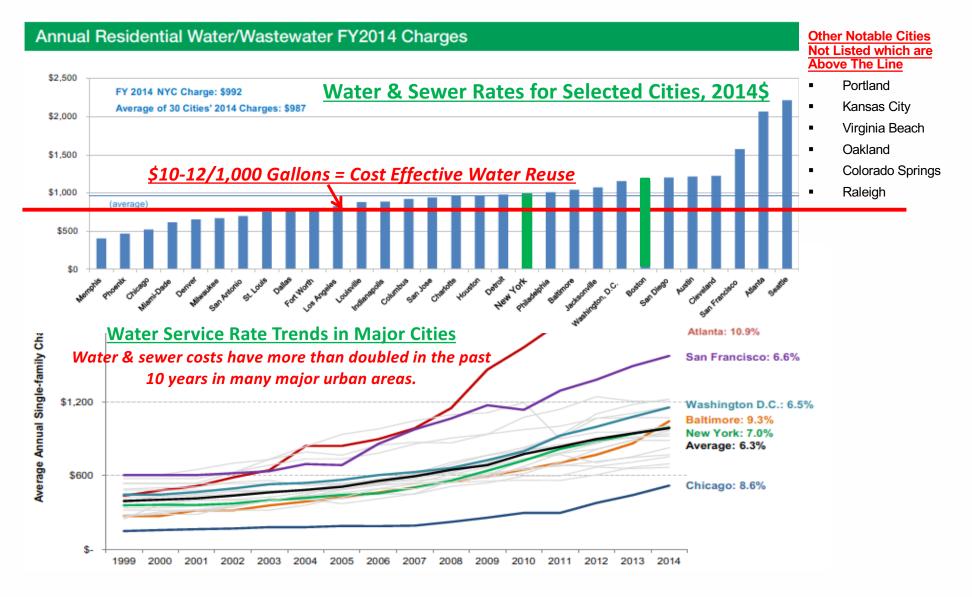
Water/Energy Nexus

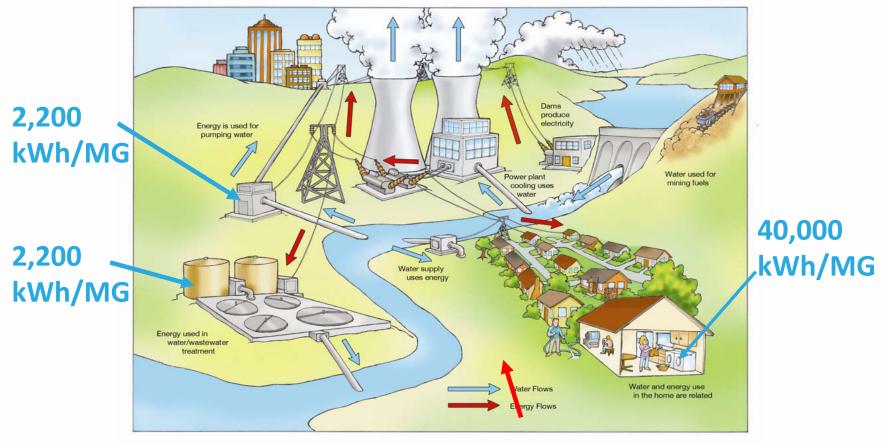

- Biofuels, electric cars, natural gas and wind power use less oil, however, these alternatives dramatically increase water use
- Onsite/Distributed Systems
 - To combat these issues, many communities have opted to provide onsite water resource management systems to help reduce the amount of potable water being used and the amount of wastewater entering the receiving environment.



Onsite/Decentralized Vs Centralized

Lessons Learned From Super-Storm Sandy


- ~100 onsite systems currently managed in the Northeast, 80 within those areas directly impacted by Super-Storm Sandy.
- ZERO NSU onsite facilities exceeded effluent permit requirements while many centralized facilities were down for weeks or longer discharging untreated sanitary wastewater into the local water bodies.


The Emerging Water Reuse Business Case

Water & Sewer Costs Are Increasing

Water-Energy Nexus

Most of the Energy in WW is in the form of sensible heat

25,000 kWh/MG Lost Heat

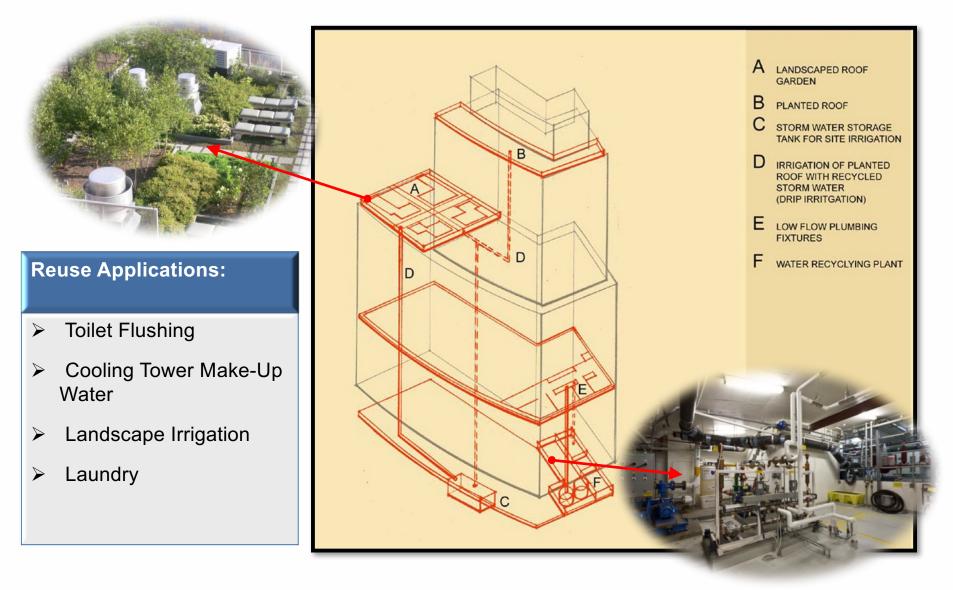
Energy Use In The Water Cycle

ltem	range	typical	Comments		
nem	kWh/M0	G	comments		
Drinking Water Treatment	200 -13,000	200	Lost energy		
Drinking Water Supply	250 - 3000	2,000	Lost energy		
In House Energy Gains					
. Sensible Heat	30,000 - 60,000	40,000	Remains as Sensible Heat		
. Oraganic Matter Energy	5,000 - 10,000	6,000	Remains as Chemical Energy		
Wastewater Collection					
. Pumping	50 - 500	150	Lost energy		
. Lost Heat	15,000-30,000	(25,000)	Sensible Heat lost to Environment		
Wastewater Treatment	500 - 6,000	2,000	Lost energy		

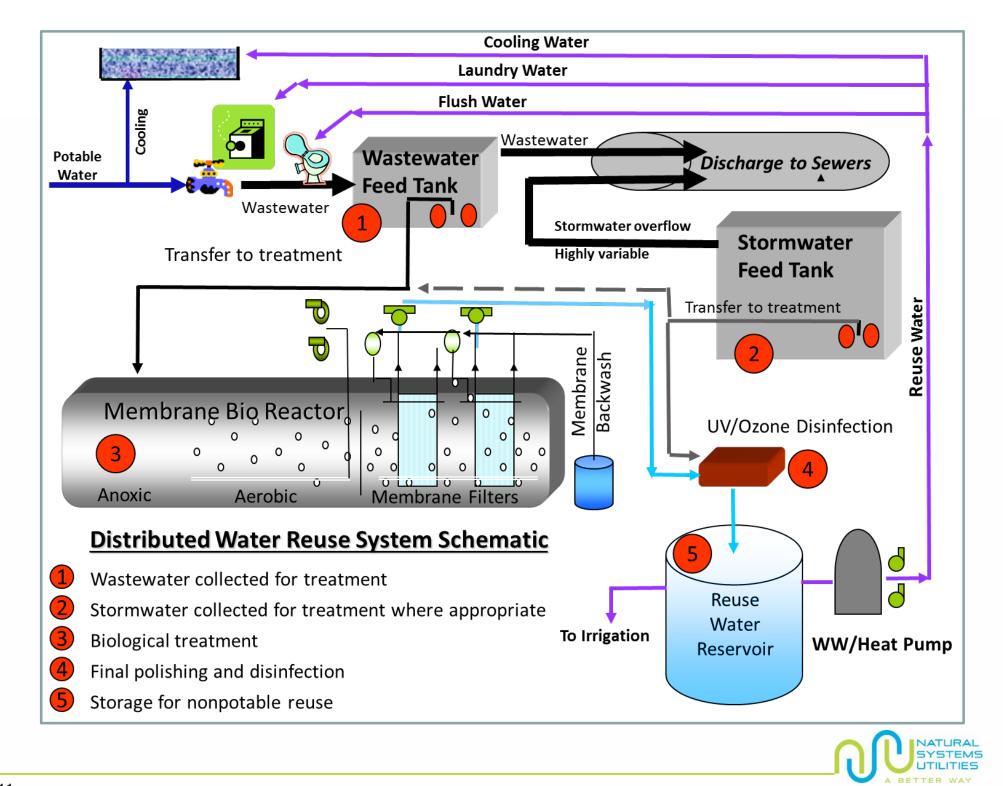
Energy in Wastewater

Wastewater contains ten times (10x) the energy currently used for treatment. Can we harvest it?

WWTP Energy Market in US


Existing flow range (mgd)	Number of facilities	Total Existing Flow (mgd)	Average Energy Intensity kwh/MG	Power Demand MW
0.000 to 0.100	5,703	257	5,440	58
0.101 to 1.0	5,863	2,150	5,440	487
1.001 to 10	2,690	8,538	2,503	890
10.001 to 100	480	12,847	2,288	1,225
100.001 and greater	38	8553	2,200	784
Other	6			
Total	14,780	32,345	2,556	3,445

Wastewater Treatment Plants in the US have an estimated electric power demand of 3,500 MW



Case Study: Battery Park, NYC

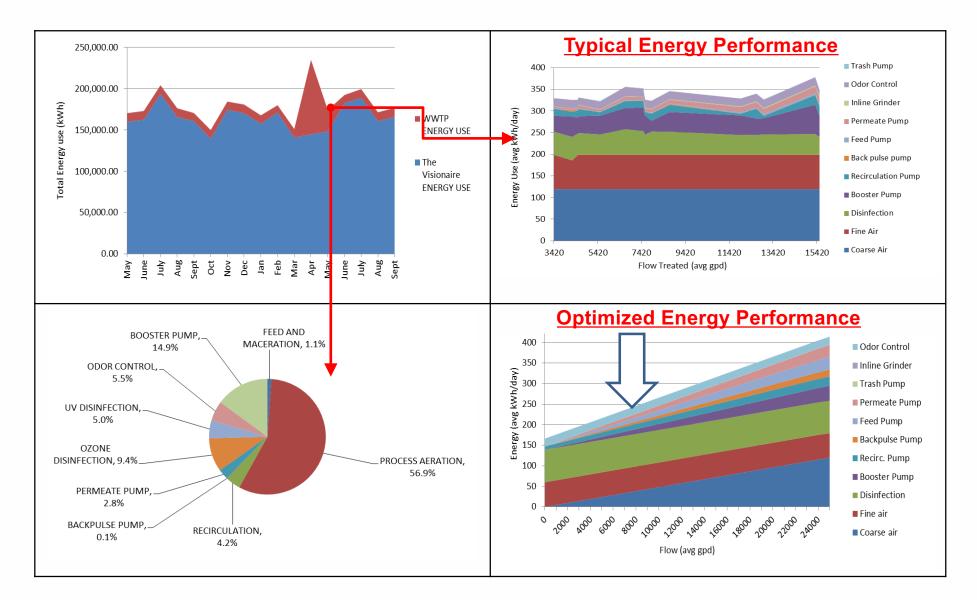
In Building Water Reuse & Thermal Energy Recovery

Onsite Water Treatment & Reuse Tour

http://www.naturalsystemsutilities.com/offerings/water-reclamation/water-reuse/

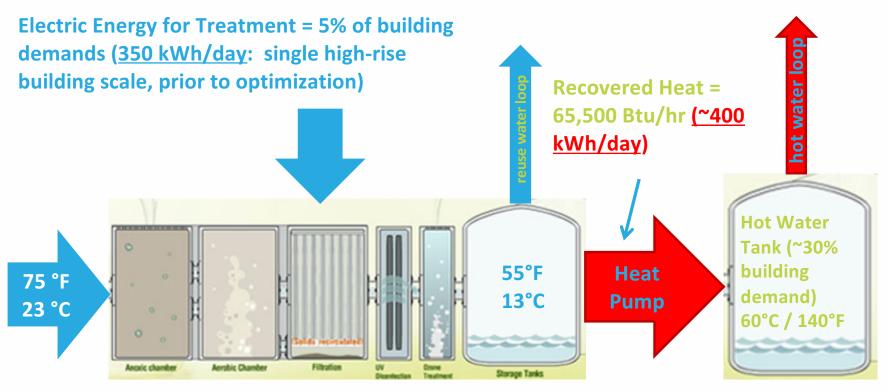
System Performance

Proven Technologies/System Operations With Proven Results


NYC Required Parameter	DOB Limit	Membrane Specs	System
BOD (mg/L)	<10	<2	
TSS (mg/L)	<10	<2	Requirements
Fecal Colliform (CFU/100mL)	<100	<10	
Turbidity (NTU)	<2	<0.2	Actual
E. Coli Colony Count (#/100mL)	<2.2	N/A	Performance
рН	6.5-8.0	N/A	

Over 10 years of
onsite in-building
urban reuse
system
performance data
consistently
exceeding permit
requirements with
zero violations!

System Location	BOD, mg/l	TSS, mg/l	Turbidity NTU	Fecal Coliform #/100 ml	E. Coli #/ 100 ml
The Solaire (2003)	< 6	< 1	0.05 – 0.25	< 1	—
Millennium Tower Residences	< 6	< 1	0.15 – 0.45	< 1	—
The Visionaire	< 6	< 1	0.15 – 0.45	< 1 (Total coliform)	< 1
The Helena	< 6	< 1	0.05 -0.20	< 1	—


Optimizing System Energy Performance

Thermal Energy Recovery

Net Neutral/Positive Energy Onsite Water Reuse

- Embedded energy in wastewater is greater than 4x the amount of energy used for treatment (43 kwh/kgal).
- Water reuse systems can now become <u>net energy neutral</u> and net energy positive at the high-rise building scale or larger with this technology (after accounting for conversion losses)

Energy Positive & Cash Positive

Item	Units	Natural Gas	Heating Oil	Propane	Electricity
Cost of Electric Energy	\$/ kWh	0.12	0.12	0.12	0.12
Cost of Fuel	\$/dTherm	11	30	37	35
Electric Energy Intensity MM/TD	k\\/b/kaal	10	10	10	10
Electric Energy Intensity WWTP	kWh/kgal	10	10	10	10
Electric Energy Cost for WWTP	\$/kgal	1.2	1.2	1.2	1.2
Value of Energy Recovered	\$/kgal	1.6	4.4	5.4	5.2
Net Income to WWTP Operator	\$/kgal	0.4	3.2	4.2	4.0

Payback of 1.5 to 5 years depending on the fuel displaced and environmental incentives

> New System vs Retrofit makes a difference

Case Study: MacDonald Island

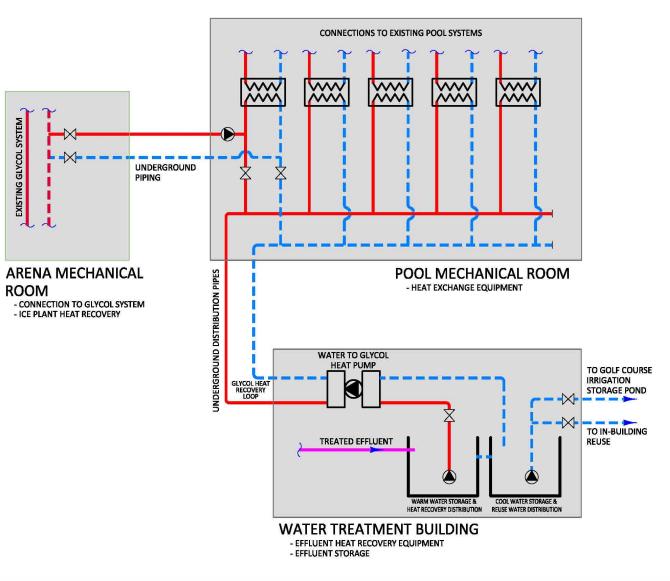
Water Reuse & Thermal Energy Recovery

MacDonald Island, AB, Canada

- Located in the Regional Municipality of Wood Buffalo at the junction of the Clearwater, Athabasca and Snye Rivers.
- Existing facilities on MacDonald Island (MI) include a Recreation Center and Golf Course.
- Plans to expand the recreational activities with a sports complex and stadium known as Shell Place will generate water & wastewater demands which exceed current infrastructure capacity.
- A decentralized/distributed water reclamation and energy recovery system will be installed on MI to treat all wastewater from MI, recover the heat energy for pool heating and reuse the treated effluent for irrigation and flushwater.

Case Study: MacDonald Island

Water Reuse & Thermal Energy Recovery



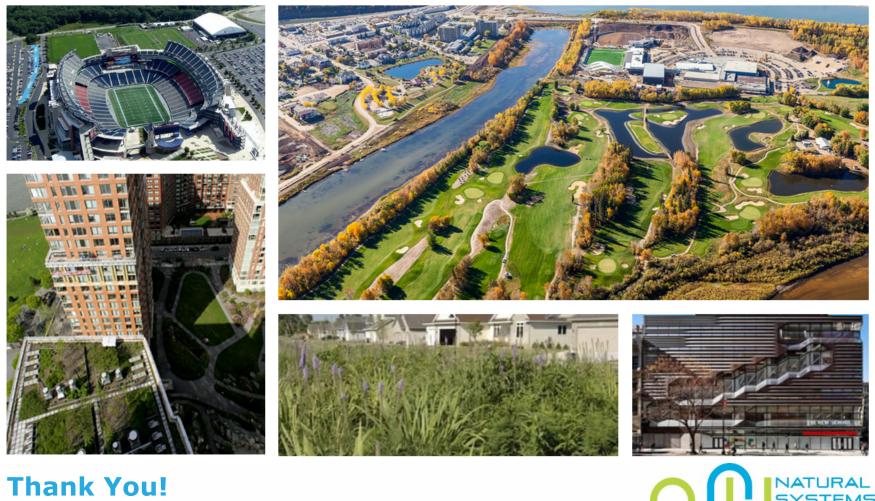
Case Study: MacDonald Island

Water Reuse & Thermal Energy Recovery

Triple Bottom Line Impacts

- Reduce indoor potable water use by 30%
- Reduce wastewater flow to grid by nearly 100%
- Utilize 100% reclaimed water for golf course irrigation
- Reduce surface water diversions by 20 MGal per year
- <u>Recover 240kW of wastewater</u> <u>heat energy</u>
- Reduce 605 tCO2e greenhouse gas emissions
- Reduce capital expense by \$3M
- > **Operations Data:**
 - 342 MWh of heat recovered from the wastewater effluent.
 - 66 MWh of heat recovered from the ice rink refrigeration system.
 - Competition pool is operating on 100% recovered heat.

Onsite Water Treatment & Reuse


The Business Case: East Coast to West Coast

	А	В	С	D = B-C	E = (B/1,000) x A	F = (D/1,000) x A	G = F x -0.25	H=F+G	I = E - H	J	K = I - J
		Total Building		New	York City		Annual				
		Water Use (NYC					Comprehensive	Annual Water	Annual Water	Annual Reuse	
	NYC Water &	Supply & Reuse	Reuse Water	NYC Water	Annual Water &	Annual Water &	Water Reuse	& Sewer Fee	& Sewer	System	Annual Net
	Sewer Fee	Supply - annual	Produced	Supply	Sewer Fee	Sewer Fee	Program (CWRP)	(with reuse +	Savings	Operating	Savings
Yr	(per 1,000 gal)	gallons)	(annual gallons)	(annual gallons)	(without reuse)	(with reuse)	Incentive	CWRP)	(with reuse)	Cost	(with reuse)
2015	\$12.81	78,475,000	23,725,000	54,750,000	\$ 1,005,067.51	\$ 701,209.89	\$ (175,302.47)	\$ 525,907.42	\$ 479,160.09	\$ 120,000.00	\$ 359,160.09

NATURAL SYSTEMS UTILITIES

Thank You! Questions?

New Jersey Office-HQ

2 Clerico Lane, Building 1 Hillsborough, NJ 08844

New England Office

21 Father DeValles Blvd, Suite 107 Fall River, MA 0272321 Father

Western Office

477 Devlin Road, Suite 107 Napa, CA 94558 **Central Office**

17818 Hwy 65 NE, Suite 100 Ham Lake, MN 55304