EVALUATING EMERGING CONTAMINANT BIODEGRADATION—ARE NITRIFIERS DOING THE WORK?

AMY HUNTER*, SANDEEP SATHYAMOORTHY[#], CATHERINE HOAR[§], C. ANDREW RAMSBURG*, KARTIK CHANDRAN[§] *TUFTS UNIVERSITY, [#] BLACK & VEATCH, [§]COLUMBIA UNIVERSITY

CONTAMINANTS OF EMERGING CONCERN (CECs)

- Endocrine disrupting compounds
- Pharmaceuticals
- Personal Care Products
- Persistent Organic Pollutants
- Nanoparticles

Ibuprofen

CECs HAVE DELETERIOUS ENVIRONMENTAL IMPACTS

From Ruiz A.M et. al, *Environ. Sci. Technol.* 2010, 44, 4862-4868.

ENVIRONMENTAL FATE OF CECs

FATE OF CECs IN WRRFs

CONVENTIONAL WISDOM – CEC REMOVAL IMPROVES WITH INCREASED SRT

Removal → biodegradation coupled with sorption in all systems

SRT to achieve MC removal

- compound specific (Ternes et al., 2004; Clara et al., 2005; Stephenson and Oppenheimer, 2007)
- in the range of 10+ days (Ternes et al., 2004; Clara et al., 2005; Stephenson and Oppenheimer, 2007)

SRT & PhAC REMOVAL

FATE OF CECs DURING BIOLOGICAL TREATMENT

Evaluating the degradation of selected beta blockers during nitrification

Sathyamoorthy et al., Environmental Science and Technology, 2013 Sathyamoorthy et al., Environmental Modeling and Software, 2014

BATCH EXPERIMENTS

Protocol

- Continuously mixed in 4000 mL glass beakers
- Dissolved oxygen >4 mg·L⁻¹, manually controlled by aquarium air blowers
- Alkalinity manually added as NaOH solution, pH range of 7.5-8.0
- Target MLSS 1200 mg/L; Target MLVSS 900 mg·L⁻¹ (75% volatile)
- Allylthiourea (ATU) added for inhibition of ammonia oxidation

Batch Reactors Matrix							
Conditions	Nitrification Control (NC)	Experimental Reactor (NEA)	Experimental Reactor (NEB)	Nitrification Inhibited Control (NI)			
Ammonia 20 mg-N/L	✓	~	~	✓			
PhAC 20 ug/L		~	~	✓			
ATU 35 mg/L				✓			

ATENOLOL BIODEGRADES & APPEARS LINKED TO AMMONIA OXIDATION

Sathyamoorthy et al., Environmental Science and Technology, 2013

WHAT ABOUT ATN BIODEGRADATION IN THE ABSENCE OF NITRIFICATION?

ATENOLOL INHIBITS AMMONIA OXIDATION

IMPLICATIONS OF INHIBITION OF AOB BY ATENOLOL

- Competitive inhibition may influence nitrification processes – needs more research
- Implication(s) for plants likely more muted
- But, competitive inhibition effects can be additive – how many PhACs exert this effect?

Plant influent	2.3 μg/L	
Primary effluent	1.2-2.2 μg/L	
Plant effluent	0.6-1.7 μg/L	
Plant effluent	0.6-1.7 μg/L	

Ternes et al., 2007, Lee et

ROLE OF AOB IN PhAC BIODEGRADATION

CPB model coefficients used						
	ATN	NAP				
T _{ATN-AOB} **	71.5 ± 22.7	13.6 ± 6.0	L.g-COD ⁻¹			
k _{atn-aob} *	16.1 ± 5.6	4.3 ± 1.1	L.g-COD ⁻¹ .d ⁻¹			
$\alpha_{\text{ATN-HET}}$	22.3 ± 4.4	0.4 ± 0.4	L.g-COD ⁻¹ .d ⁻¹			

- ****** values are statistically different (p < 0.01)
- * values are statistically different (p < 0.02)</pre>
- In WRRFs, AOB have varying role
- NAP: < 10%
- ATN: 5% 30%
- Underscores the need to:
- Expand development of CPB model coefficients for different PhACs
- decouple PhAC fate & biodegradation from operational variables (e.g., SRT)

PhAC BIODEGRADATION BY MIXED CULTURE COMMUNITIES

WRRF Operation Characteristics						
Plant Characteristics		Facility A	Facility B			
Basic Description	Capcity (MGD):	1,270	5.5			
	Nutrient Removal:	None	Nitrogen, Phophorus			
	Secondary:	Conventional Activated Sludge process utilizing pure oxygen and mechanical mixing	Single Stage			
	Treatment	Domestic, Industrial	Domestic, Industrial			
Operating Characteristics	SRT (day):	1.3	10-12			
	MLSS (mg/L):	1,380	3,480			
	MLVSS (mg/L):	1,220	2,660			

- Comparison of degradation of beta blockers between facilities
 - Facility A: Partial to complete removal for ATN and MET
 - Facility B: Partial to complete removal for ATN, MET, and SOT

FATE OF CECs DURING BIOLOGICAL TREATMENT

- Estrogen mimic (Rogers et al., 2013)
- Transcriptional level changes in fish reproductive system due to chronic exposure to BPA (~ 10 ng/L) (Villeneuve et al., 2012)
- 2014 BPA included on List of Chemicals for Assessment under TSCA (USEPA, 2014)

Application of DNA Stable Isotope Probing to Identify Bacteria Assimilating Bisphenol A

Sathyamoorthy et al., In Preparation ISME J Sathyamoorthy et al., WEFTEC 2015 WERF U2R2 Final Report

For more info on DNA-SIP, c.f.: Chen & Murrell, 2011

DNA SIP APPROACH

BPA BIODEGRADATION USING BIOMASS FROM PET & SCT REACTORS

Biomass Conc. ~ 1,000 mg-COD/L

FEW GENERA DOMINATE BOTH ¹³C-HEAVY FRACTIONS

- Sphingobium
 - known BPA degraders
- Variovorax
- Sphingomonas
- Novosphingobium

POTENTIAL BPA (AND METABOLITE) ASSIMILATORS IN THE PET & SCT BIOREACTORS

SCT SAMPLE

FATE OF CECs DURING BIOLOGICAL TREATMENT

Amy Hunter Tufts University Medford, MA amy.hunter@tufts.edu

Sandeep Sathyamoorthy Black & Veatch Walnut Creek, CA 925-949-5913 SathyamoorthyS@bv.com

QUESTIONS