Selecting the Optimal Coagulant to Achieve Low-Level Phosphorus and Metal Limits at the Upper Blackstone Wastewater Treatment Facility

Alexandra Bowen, EIT
Maureen Neville, P.E.
Erik Grotton, P.E.
Karla Sangrey, P.E.

January 25, 2017
Upper Blackstone Wastewater Treatment Facility

- Serves 250,000 people in central Massachusetts, including the City of Worcester
- Discharges into the Blackstone River which ultimately flows to the Narragansett Bay
- Designed for 45 mgd ADF and 160 mgd peak hour; 30 mgd current ADF
- Regional biosolids facility
Upper Blackstone’s NPDES Permit Limits

<table>
<thead>
<tr>
<th>Constituent</th>
<th>2012 Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Nitrogen (mg/L)</td>
<td>5.0</td>
</tr>
<tr>
<td>Total Phosphorus (mg/L) – 60-day rolling average</td>
<td></td>
</tr>
<tr>
<td>Apr-Oct</td>
<td>0.10</td>
</tr>
<tr>
<td>Nov-Mar</td>
<td>1.0</td>
</tr>
<tr>
<td>Aluminum (µg/L)</td>
<td>87</td>
</tr>
<tr>
<td>Cadmium (µg/L)</td>
<td></td>
</tr>
<tr>
<td>Avg Monthly</td>
<td>0.2</td>
</tr>
<tr>
<td>Max Day</td>
<td>1.5</td>
</tr>
<tr>
<td>Copper (µg/L)</td>
<td></td>
</tr>
<tr>
<td>Avg Monthly</td>
<td>7.2</td>
</tr>
<tr>
<td>Max Day</td>
<td>10.2</td>
</tr>
<tr>
<td>Zinc (µg/L)</td>
<td>91.3</td>
</tr>
<tr>
<td>Lead and Nickel (µg/L)</td>
<td>Report</td>
</tr>
</tbody>
</table>

- **Stringent nutrient limits due to Blackstone River (impaired) and Narragansett Bay (hypoxia)**
- **Currently operating under interim limits**
 - TN of 6 mg/L
 - TP of 0.45 mg/L
- **Meet metals limits but not TP limit**
- **Challenging combination of TP and metals limits**
Upper Blackstone’s Adaptive Management Approach

Current Process Configuration:

- No chemical addition or tertiary process for TP removal
- Requires additional process to achieve TP limit

Proposed Process Configuration for TP:

- Requires coagulant addition and add-on process to achieve < 0.1 mg/L TP
EBPR Performance

- 50th Percentile = 0.20 mg/L
- 90th Percentile = 0.49 mg/L
- 50th Percentile = 0.54 mg/L
- 90th Percentile = 1.00 mg/L

Apr to Oct 2010-2012
Apr to Oct 2013-2016
Steps Toward Achieving 2012 TP Permit Limit

- Interim Measures
- Nutrient Facilities Plan
- **Bench-Scale Testing**
- Pilot-Scale Testing
- Full Scale Implementation of Tertiary Phosphorus Removal Technology
Bench Scale Testing Protocol

- Blueleaf, Inc. conducted a series of jar tests on secondary effluent
 - If TP<0.2 mg/L, spiked with anaerobic zone mixed liquor to achieve 0.2 mg/L TP
- Six coagulants tested at varying Me:TP-removed ratios and pH levels
 - 13 jar tests for each coagulant
- Coagulated samples filtered through 1.5 µm filter and analyzed for TP
- Effluent TP objective = 0.08 mg/L
 - 80% of permitted TP value
- Response surface charts created using results
- Sulfide-based polymer tested at 1 coagulant dose with varying polymer doses
Response Surface Testing Approach

- Evaluates the effect of two independent variables on a dependent variable, when two independent variables interact.

Center point tested with 5 replicate jars to evaluate variability

Each of the 8 perimeter points represent one jar test (a particular coagulant dose and pH level)

![Diagram showing Molar Ratio (Metal:TP) vs. pH with data points and center point marked.](image-url)
Chemicals
Aluminum-Based Coagulants

- Coprecipitates/adsorbs phosphorus with Al-hydroxide floc with phosphates
 - Surface chemistry
- Gelatinous floc may not easily settle (less dense than floc formed with iron)
- Unwanted aluminum introduced to wastewater (NPDES Permit)
- Considered PACI and ACH since doesn’t suppress pH as much (as alum)
- Considered ACH due to higher Al content by weight

Alum (Aluminum Sulfate)
- Al^{3+}
- $\approx 4.4\% \text{ Al}$

PACI (Polyaluminum Chloride)
- Al^{3+}
- $\approx 5.6\% \text{ Al}$

ACH (Aluminum Chloride Hydrate)
- Al^{7+}
- $\approx 12.4\% \text{ Al}$
Iron-based Coagulants

- Coprecipitates/adsorbs phosphorus with Fe-hydroxide floc with phosphates that settle
 - Surface-chemistry
- Iron-based floc are more dense than aluminum-based floc, can settle more easily
- Can cause reddish brown staining on equipment
- Considered ferric sulfate since should have lower copper

Ferric Chloride
Fe$^{3+}$
≈13.5% Fe

Ferric Sulfate
Fe$^{3+}$
≈13.1% Fe
Cerium-Based Coagulant

- Cerium (rare earth metal) forms a crystalline solid precipitate with phosphorus
 - Forms strong ionic bonds
- Effective at lower molar ratios (as low as 1:1)
- Reduced chemical usage and sludge
 - Proven at pilot studies in Mid-West
- Distributed by NeoChemicals and Oxides
 - Formerly named SorbX-100
MetClear™ 2405

- Sulfide-based polymer removes heavy metals
- Anionic polymer with sulfide functional groups
 - Solubility of metal sulfide precipitates are much less than metal hydroxide precipitates
 - Metal sulfide precipitates are amphoteric (unlike metal hydroxide precipitates)
- Manufactured by GE
- Typically used for industrial pretreatment applications
 - Low flow, high metals concentrations
- Useful tool to mitigate elevated metals
Results
Alum
(Aluminum Sulfate)

- Achieved TP objective at all molar ratios
 - 9-28 mg/L as Alum
- Most effective at pH <7.0
 - Can be mitigated by higher alum doses
- Molar Ratio=5:1
- Projected annual chemical cost: $34,000/year
PACI
(Polyaluminum Chloride)

- Achieved TP objective at molar ratios >5.5:1
 - 15-46 mg/L as PACI
- Highly Dependent on pH
 - Ineffective at pH > 7.7
- Molar Ratio=10:1
 - Higher molar ratio than alum requirement
- Projected annual chemical cost: $336,000/year
 - Much more expensive than alum
ACH (Aluminum Chloride Hydrate)

- Achieved TP objective at molar ratios >15:1
 - 19 mg/L as ACH
- Ineffective at high pH
 - Ineffective at pH > 7.5
- Molar Ratio=15:1
 - Higher than Alum and PACl
- Projected annual chemical cost: $445,000/year
 - Higher than Alum and PACl
Ferric Chloride

- Achieved TP objective at all molar ratios tested
 - 5-15 mg/L as Ferric Chloride
- Little effect from pH
- Molar Ratio=5:1
 - Similar to Alum
- Projected annual chemical cost: $49,000/year
 - Slightly higher than Alum cost
- Achieved TP objective at molar ratios 10:1
 - 13-19 mg/L as Ferric Sulfate
- More effective at higher pH values
 - Can be mitigated with increased iron doses up to a point
- Molar Ratio=10:1
 - Higher than Ferric Chloride
- Projected annual chemical cost: $159,000/year
 - Much higher than Ferric Chloride cost
RE-100 (Cerium Chloride)

- Achieved TP objective at molar ratios >2:1
 - 3 mg/L SorbX-100
- Ineffective at pH >8.3
- Molar Ratio=2:1
 - The lowest molar ratio of all coagulants
- Projected annual chemical cost: $286,000/year
 - Greater than Alum and iron-based coagulants, but less than PACl and ACH
Coagulation Summary

Alum
- Achieved TP objective at all molar ratios
- Effective without pH adjustment
- Estimated Molar Ratio- 5:1 (9 mg/L)
- $34,000/year
 - Least expensive coagulant

Ferric Chloride
- Achieved TP objective at all molar ratios
- Little dependence upon pH
- Estimated Molar Ratio- 5:1 (5 mg/L)
- $49,000/year
 - Second least expensive coagulant

RE-100
- Achieved TP objective at much lower molar ratios
- Ineffective at pH > 8.3
 - Should not impact UB operations
- Estimated Molar Ratio- 2:1 (3 mg/L)
- $286,000/year
 - Higher cost could be offset by savings attributed to low residuals/solids handling

Coagulants to move forward to sulfide-based polymer testing
Resultant Metal Concentrations

- **Alum** increases **Aluminum**
 - $17 \mu g/L$ vs. $45 \mu g/L$

- No impact on **Cadmium**
 - $0.32 \mu g/L$ vs. $0.26 \mu g/L$

- **FeCl₃** increases **Copper**
 - $3.8 \mu g/L$ vs. $5.0 \mu g/L$
MetClear™ 2405 with Alum

Alum dose = 42 mg/L

Cadmium Reduction: 27%-47%
Independent of Polymer Dose

% Metal Reduction

Polymer Dose

0.25 mg/L 0.50 mg/L 0.75 mg/L 1.00 mg/L
MetClear™ 2405 with Ferric Chloride
Ferric Chloride dose = 24 mg/L

Nickel Reduction: 3%-15%

<table>
<thead>
<tr>
<th>Polymer Dose</th>
<th>Cu Reduction</th>
<th>Cd Reduction</th>
<th>Pb Reduction</th>
<th>Al Reduction</th>
<th>Zn Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25 mg/L</td>
<td>52% - 65%</td>
<td>33% - 46%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00 mg/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MetClear™ 2405 with RE-100

RE-100 dose = 16 mg/L

Cadmium Reduction: 33%-46%
Key Conclusions

- No pH adjustment required with alum, ferric chloride, and SorbX
- Alum and ferric chloride were the least expensive coagulants
- RE-100 achieved TP goals at the lowest molar ratios, but with higher costs
 - Higher chemical costs could be offset by savings from residuals handling
- MetClear™ 2405 was able to reduce heavy metal concentrations
 - Copper by >50%
 - Cadmium by 30%
 - Nickel (10-20%) from Ferric Chloride and RE-100 samples
 - Aluminum (10-30%) from RE-100 samples
 - Little to no impact on Lead and Zinc Concentrations
Steps Toward Achieving 2012 TP Permit Limit

- Interim Measures
- Nutrient Facilities Plan
- Bench-Scale Testing
- Pilot-Scale Testing
- Full Scale Implementation of Tertiary Phosphorus Removal Technology

Materials:
- Alum
- Ferric Chloride
- RE-100

MetClear™ 2405
Acknowledgements

George Swedberg & Fred Lusky

Dana Green

Engineering: Mark Johnson & Randy Komssi
Plant Operations: Mike Foisy & Joe Nowak
Questions? Contact us!

Alexandra Bowen
BowenAB@cdmsmith.com

Maureen Neville
NevilleMD@cdmsmith.com

Find more insights through our water partnership at cdmsmith.com/water and @CDMSmith