City of Nashua, New Hampshire WWTF Headworks Upgrade

Presenters: Noelle Osborne – Nashua WWTF Andy Morrill – Wright-Pierce

NEWEA Annual Conference Session 18 January 24, 2017

Presentation Overview

- ✓ Nashua WWTF Background
- ✓ Project Drivers
- ✓ Equipment Selections
- ✓ Operational Solutions
- ✓ Additional Improvements
- ✓ Project Overview/Status

✓ Q & A

Nashua WWTF Background

- Population
 - 87,000
- Collection system
 - over 400 miles
 - combined
- Main WWTF
 - average daily flow 12 MGD
 - peak hourly flow 50 MGD
- Wet weather facility
 - peak hourly flow 60 MGD

Nashua WWTF Background

- Collection System
 - Total 420 miles
 - Combined 100 miles
 - Separate Sanitary 190 miles
 - Separate Storm 130 miles
 - 13 Pump Stations
 - CSO Structures
 - Nashua River 4
 - Merrimack River 5

Service Area

- Nashua, NH
- Hudson, NH
- Merrimack, NH
- Tyngsboro, MA

Nashua WWTF Background Nashua WWTF - 1965

Nashua WWTF Background Nashua WWTF - 2002

Nashua WWTF Background

- Existing Screening Equipment
 - Two IDI Climber Screens
 - ³/₄-inch bar spacing
 - lift to second level EL. 19.5
 - submerged operation hydraulic drive
 - Two Lakeside Wash Presses
 - two-stage
 - Screw Conveyors
 - combined hopper to vertical screw

Project Drivers Screening Equipment Reached end of "Useful Life" > one screen offline prior to design channel track repair > one screen offline during design > arm assembly replacement > one screen currently used during "emergencies only" > washpress frequently offline bearing replacement

Project Drivers Screenings Handling vertical screw conveyor abandoned

- > discharge to small carts
- carts hoisted to ground level
 - > labor and time intensive
 - safety concerns

Project Drivers Downstream Ragging > Grit Removal System jammed shaftless screw conveyor ➢ increased cleaning & maintenance Digester Complex decreased operational efficiency > added cost to remove matted rags

Project Drivers

- ➢ Influent Flooding
 - Screen Room
 - > high level of operator attention
 - > additional cleaning & maintenance
 - Collapsed HVAC ductwork

KEY GOALS

- increase mechanical reliability
- increase screenings capture
- > effective screenings washing
 - reduce quantity & disposal costs
- > automated screenings conveying to ground level
- > upgrade ventilation and odor control as necessary
- > accomplish goals within available funding

>Type of Screen

Climber

 heavy duty provided rake-arm motor/drive above channel
 requires substantial headroom space
 limited screenings removal capacity
 once per cycle

Equipment Selections >Type of Screen Chain & Flight (Multi Rake) >front-raked & return >heavy-duty application highest screenings removal requires minimal headroom ➢ least impact on hydraulic capacity with smaller bar spacing

Estimated Additional Screenings Generation for Nashua, NH Headworks

Note: Based on Typical generation rates depicted in previous graph.

Layout Alternatives

- Alternative 1 Screens discharging at ground floor level (Elevation 36.0)
- Alternative 2 Screens discharging to new mezzanine (Elevation 25.0)

• Alternative 3 - Screens discharging to screening room (Elevation 19.5)

- Screens discharge to wash presses at EL. 36.0
 - must use chain and flight screens
- Wash presses discharge directly to screenings container
- Workable ground floor impacts
- Highest cost but within budget
- Best long-term solution

- Screens discharge to wash presses at EL. 25.0
 - must use chain and flight screens
- Wash presses discharge to 30-degree incline screw
- No ground floor impacts
- Moderate cost within budget

Equipment Selections Alternative 3 – Screens Discharge at EL. 19.5

- Screens discharge to wash presses at EL. 19.5
 - chain and flight screens or climber
- Wash presses discharge to 45-degree incline screw
- Second horizontal screw
- No ground floor impacts
- Lowest capital cost within budget

- Huber Rake-Max Screens
 - 3/8" bar spacing
- Vulcan Wash Presses

Operational Solutions Hydraulic Modeling existing conditions flow to WWTF theoretical actual

proposed conditions one & two screen operation each screen - 60 MGD

Operational Solutions SOP Review/Operator Input > influent gate > wet well levels raw sewage pumps >secondary bypass

Operational Solutions

Automation of

>third raw sewage pump & influent gate

>third raw sewage pump
> control via wet well level
> influent gate control
> "storm event" virtual button
> gate to ready position
> adjust influent gate to maintain
> wet well level - 8.0 feet
> influent flow - 50 MGD

Operational Solutions

>Automation of

> secondary bypass gate operation
 > after third raw sewage pump started (~32 MGD)
 > AND wet well level 7.5-feet (rising)

Storm Event Duration (hours)	Bypass Flow (MGD)	Secondary Flow (MGD)
≤ 6	18	32
6 to 12	24	26
≥ 12	32	18

Additional Improvements

Restore Existing Venturi Flow Meters secondary effluent (60-inch) secondary bypass (36-inch)

Additional provements > Replace HVAC > wet well > dry well > ductwork

Additional Improvements ➢ Replace > Aged MCCs ≻MCC-CB4 >MCC-2 Wet Well Odor Control ➢ fiberglass fan >new GAC >new bypass >new mist eliminator

Project **Overview/Status** Construction Cost: \$2.85M Engineering Cost: \$0.65M \$3.50M **Total Cost: Currently 20% through Construction Budget**

Substantial Completion: May 23, 2017 Final Completion: August 21, 2017 Currently 51% through Contract Time

Questions

