BUILDING A BORLD OF DIFFERENCE

MEMBRANE AERATED BIOFILM REACTORS –OXYGENATED FUN WITH LESS CARBON COST

KELLY MARTIN AND SANDEEP SATHYAMOORTHY

AGENDA

- Background
- Commercialized Technology
- Concept Evaluation

BACKGROUND

THE MABR PROVIDES ENERGY-EFFICIENT AERATION TO A BIOFILM

gas-supplying membranes support biofilm growth

THE MABR SUPPORTS BIOFILM ON OXYGEN-SUPPLYING MEMBRANES

distance from attachment surface

THE MABR SUPPORTS TOTAL NITROGEN REMOVAL

distance from attachment surface

Oxygen is consumed within the biofilm, supporting anoxic conditions for denitrification in outer biofilm and/or bulk liquid.

THE MABR COMBINES THE BENEFITS OF A BIOFILM TECHNOLOGY WITH ENERGY EFFICIENT AERATION

Energy Efficiency

- OTEs of ~60%, can achieve higher if necessary
- Total Nitrogen Removal
- Lower Sludge Production
- Reduced Footprint

*MABR values provided by manufacturers other SAE values from Stenstrom and Rosso, 2008

UNIQUE MABR CHALLENGE: MAINTAIN A CRITICAL BIOFILM THICKNESS

Support biofilms...

but not too much.

distance from attachment surface

MABR TECHNOLOGY DEVELOPMENT

TECHNOLOGY PROVIDERS

TECHNOLOGY PROVIDERS

- Company founded in 2008
- Offices in Israel and Australia
- Focused on decentralized, remote or developing areas

emefcy

Spiral-wound module of membrane and spacer Bubble pulses create airlift-type mixing between spacers

ETHIOPIA

- Hospital Sanitary Wastewater
- 85,000 gpd

ISRAEL

- Reclaimed water from dairy farming wastewater
- 35,000 gpd

ST. THOMAS US VIRGIN ISLANDS

- Rural municipal wastewater
- 25,000 gpd

CHINA

 Demonstration of rural wastewater treatment

emefcy

R 14

• Building of dedicated manufacturing plant

- Uses ZeeWeed[™] configuration
- Scouring and mixing by aeration grid integral to module

- Increase in nitrification capability during first flush events
- Process intensification for retrofit of CAS to EBPR (Kuentz et al., WEFTEC 2016)

Full scale implementation of the MABR would reduce aeration demand by 30%.

OXYMEM SMART AERATION

- Technology developed at UC Dublin
- Company founded in 2013
- Patented biofilm control strategy, which uses air scour
- Membrane cassette, package, and standalone options

Silicone membranes Outer diameter 500 μm Wall thickness 100 μm

Multiple demonstrations and pilots performed:

- Severn Trent Minworth
 - COD<40 mg/L
 - BOD< 5mg/L
 - NH₄<1 mg/L
 - TSS<30 mg/L
- Case Studies in Brazil and Spain

CONCEPT EVALUATION

CASE STUDY: MLE

Primary Effluent				
Parameter	Unit	Value		
COD/cBOD ₅	mg/L	270/145		
TSS/VSS	mg/L	100/80		
NH ₄ /TKN	mg N/L	35/46.7		
PO ₄ /TP	mg P/L	6/8		
Temp.	°C	16.5		

Basins				
Zone	DO (mg/L)	HRT (hr)		
AX-1	0	1		
AX-2	0	1		
AE-1	2	1.75		
AE-2	2	2		

MABR Settings				
Parameter	Unit	Value		
Biofilm thickness	μm	250		
Mem. surface area	m²	9		
O ₂ partial pressure in	atm	0.32		
O ₂ partial pressure out	atm	0.12		

MLE-MABR

AX1-MABR AX-2 AE-1 AE-2

AX1-MABR AX-2 AE-1 AE-2

Distance from membrane (µm)

AOB and NOB reside primarily in the inner regions of the biofilm where oxygen is abundant.

NITRIFICATION CAPACITY

The MLE-MABR intensifies treatment and increases nitrification capacity.

DENITRIFICATION CAPACITY

The MLE-MABR requires a lower rate of internal recycle.

COST CONSIDERATIONS

Capital Costs

- Intensified treatment
- Required fine screens
- Limited blower addition
- Membrane life of 20 years

Operating Costs

- Decreased airflow requirements
- Lower pumping requirements
- Lower chemical costs

MABR PILOT STUDY – SUNNYVALE, CALIFORNIA

Start-Up February 2017

CONCLUSIONS

CONCLUSIONS

• The MABR offers the advantage of a biofilm reactor while offering energy savings.

- There are three commercialized MABRs available for municipal wastewater treatment retrofit and decentralized systems.
- The MABR offers energy savings due to increased aeration efficiency and potentially less pumping requirements.
- The MABR may also reduce chemical requirements due to efficient use of carbon for denitrification.

Kelly Martin MartinKJ@bv.com 8400 Ward Parkway Kansas City, MO 64114

