

Efficient Nutrient Removal under Low Dissolved Oxygen Operations

NEWEA 2017 Annual Conference

Don Esping, P.E. January 23, 2017

Agenda

St Petersburg Southwest WRF Madison Nine Springs WRF Rochester NH

Conventional Nitrification-Denitrification

Nitritation-Denitritation = "Nitrite-Shunt"

City of St. Petersburg Southwest WRF

Mainstream Nitrite Shunt

City of St. Petersburg Southwest WRF

- Current Average Flow = 9.5 MGD
- Influent TKN $\approx 42 \text{ mgN/L}$
- $TP \approx 4 \text{ mgP/L}$
- Temp. = 20 to 30 C
- SRT = 4 to 5 days
- Effluent nutrient targets
 - Total N = 10 mg/L
 - Total P = 1.0 mg/L

City of St. Petersburg Southwest WRF

Carbon Requirements for Mainstream Biological Nitrogen Removal Processes

Nitrite Shunt Control Strategy (DO, SRT, NH4, NO3)

Control Parameter	Condition	Action
NH4+	< 1 mgN/L	Reduce SRT Maintain DO = 0.1 mg/L
	> 3 mgN/L	Increase SRT Increase D0 \approx 0.3 mg/L
NO ₃ -	> 1 mgN/L	Reduce DO to 0.1 mg/L
	< 1 mgN/L	No action

Dissolved Oxygen Profile

Inorganic Nitrogen Profile

Soluble PO₄-P Profile

Final Effluent TN and TP

Aeration Comparison

Final Thoughts

- Good N and P removal performance achieved at low DO operation
- Testing showed significant NOB suppression
- Very simple A/O process (RAS only; no IMLR)
- Simple control strategy
- 50% reduction in airflow

Madison Nine Springs WRF

Conventional vs Mainstream Nitrite Shunt

Conventional vs Nitrite Shunt

Madison Nine Springs WRF

- Design Flow = 60 MGD
- Influent TKN ≈ 45 mgN/L
- $TP \approx 6 \text{ mgP/L}$
- SRT = 10 days
- Temp. = 11 to 20 C
- Target Effluent
 - Total N = 10 mg/L
 - Total P = 0.4 mg/L
 - Full nitrification

Peak Flows > 110 mgd

Dissolved Oxygen Profile

BNR Alternative Life Cycle Analysis Alternative Cost, \$ Million UCT with Sidestream Mainstream CEPT with UCT Deammonification Nitrite Shunt Nitrite Shunt Item \$27 \$22 \$30 \$31 Capital Costs Additional Annual Operating Costs Blower energy \$0.83 \$0.76 \$0.50 \$0.50 Non-blower energy \$0.10 \$0.12 (\$0.01)(\$0.01)Chemicals \$1.8 \$1.5 \$0.10 \$0.62 0&M Labor \$0.04 \$0.10 \$0.10 \$0.11 Biosolids/energy/ \$0.04 \$0.04 (\$0.15) \$0.05 struvite recovery Total O&M \$2.8 \$ 2.5 \$0.6 \$1.3 \$74 **Present Worth** \$74 \$40 \$55

City of Rochester WWTF

Low DO Operations

City of Rochester WWTF

- Current Average Flow = 2.9 MGD
- Influent TKN $\approx 30 \text{ mgN/L}$
- TP \approx 4 mgP/L
- SRT = 30 days
- Temp. = 6 to 20 C
- Target Effluent
 - Total N = 8 mg/L

Dissolved Oxygen Profile

Effluent TN

Rochester Big Picture

- Effluent TN < 10 mgN/L
- Effluent TP< 1.0 mg/L
- Annual power costs reduced by $\approx 50\%$
- Alkalinity addition(soda ash) reduced by $\approx 50\%$
- Sludge quality (SVI) not impacted by low DO

Questions & Discussion

Don Esping. P.E.

desping@brwncald.com

Phosphorus Release and Uptake Tests

