Blazing a Path to Implement a "Hybrid" Approach to Reduce Excessive Nitrogen Discharges to the Town of Orleans' Ponds, Estuaries and Embayments

New England Water Environment Association Annual Conference & Exhibit

Session 2 – Watershed Management January 23, 2017

Alan McClennen Town of Orleans, MA

Thomas Parece, P.E. AECOM





# Agenda

#### What's Driving the Hybrid Approach?

- Approved CWMP
- Consensus Plan
- Stake holder Involvement

### Hybrid Elements

- Traditional Technologies
- Non-Traditional Technologies
- Financial Model
- Delivery Options







What's Driving the Hybrid Approach?

Approved CWMP

Consensus Plan

Stakeholder Involvement





# **Elements of Hybrid Approach**

- Collection, Treatment and Effluent Disposal
- Non-Traditional Technologies
- Septic Systems Only





# Wastewater Collection, Treatment and Effluent Disposal

#### Tri-Town Septage Treatment Facility

- 30 Years Old
- 45,000 GPD with Average of 30,000 per Year
- Decommissioning
- Demolition

#### Proposed Collection, Treatment and Effluent Disposal

- 2 Geographic Areas
- About 700 Properties
- ✤ 460,000 gpd (ADF)
- 65,000 If of collection system
- 5 Pump Stations
- 3 Effluent Disposal Sites





# Wastewater Collection, Treatment and Effluent Disposal

# Collection System

- Gravity Sewers
- Low Pressure Sewers
- Septic Tank Effluent Pumping
- Septic Tank Effluent Gravity
- Vacuum Sewers
- Hybrid

# Effluent Disposal

- Open Basins
- Subsurface
- Drip
- Wick Wells

# Treatment

- Conventional Activated Sludge
- Sequencing Batch Reactor
- Integrated Fixed Film Activated Sludge
- Membrane Bioreactor
- Rotating Biological Contractor







# **NT Technology Demonstration Projects**

- Aquaculture
- Permeable Reactive Barriers (PRB)
- Nitrogen Reducing Barriers (NRB)







# NT Technology Demonstration Projects Aquaculture

#### Lonnies Pond

- Plan, Design and Implement
- Assess the feasibility of aquaculture
- Determine biomass and optimal starting size







# NT Technology Demonstration Projects Aquaculture (cont.)

#### Kent's Point Oyster Bed Propagation

- Plan, Design and Implement Oyster Bed Propagation
- Assess the feasibility of aquaculture

#### Enhanced Aquaculture in Pleasant Bay and Town Cove

- Build on previous experience with growers to enhance shellfish production through private aquaculture in Pleasant Bay
- Assess the feasibility of increasing private aquaculture in Town Cove

#### Town Cove Project

- Establish a baseline quahog population
- Determine appropriate numbers of additional quahogs to be planted for water quality benefits





NT Technology Demonstration Projects Permeable Reactive Barriers (PRB)

A PRB consists of a zone of reactive material installed in the path of a plume (e.g. nitrate)



- Naturally-occurring bacteria to convert nitrate to inert nitrogen gas (N<sub>2</sub>)
- Requires Anoxic Conditions

NEWEA 2017 Annual Conference

January 23, 2017





NT Technology Demonstration Projects Permeable Reactive Barriers - Eldredge Park

. (2014)



# NT Technology Demonstration Projects Nitrogen Removing Biofilter (NRB)

- Technology to Address
  Nitrogen at the Individual
  Lot
- Testing Ongoing at County Test Center
- \$15,000 to \$18,000 per System
- Monitoring for 5 Years
- Potentially Applicable
  Where Other Technologies are not Practical



Conceptual schematic of Nitrogen Removing Biofilter (NRB). Source: The New York State Center for Clean Water Technology, June 2016





### **Program Costs and Cost Allocation**

| Elements of the<br>Program                     | Major Cost<br>Components            | Users                               |
|------------------------------------------------|-------------------------------------|-------------------------------------|
| Collection, Treatment and<br>Effluent Disposal | Capital                             | Sewered Areas                       |
| Non-Traditional<br>Technologies                | Annual Operation<br>and Maintenance | Non-Traditional<br>Technology Areas |
| Adaptive Management                            | Replacement                         | Septic Systems Only<br>Areas        |
|                                                | Monitoring                          |                                     |





## **Financial Plan**

- Developed Detailed Model with Functionality
- Running Scenarios Using Federal, State, or Regional Funding Options
- Producing Best "Reasonably Optimistic" Scenario Outlining Assumptions and Priorities
- Completing Affordability Study Based on EPA, State and Local Metrics





## **Financial Plan Scenarios**

| <b>Component Description</b>  | Α | В | С | D | Е | F | G |
|-------------------------------|---|---|---|---|---|---|---|
| 100% Capital Cost on Tax Rate | Х | Х | Х | Х | Х | Х | Х |
| 100% O/M/R/R on User Charge   | Х | Х | Х | Х | Х | Х | Х |
| 4% Conventional Financing     | Х | Х |   |   |   |   |   |
| 20 Year Borrowing             | Х | Х | Х | Х | Х |   |   |
| 90% Grant/Loan Forgiveness    |   | Х |   |   |   |   |   |
| 2% SRF Financing              |   |   | Х |   |   |   |   |
| 0% SRF Financing              |   |   |   | Х | Х | Х | Х |
| 25% Grant/Loan Forgiveness    |   |   |   |   | Х | Х | Х |
| 30 Year Borrowing             |   |   |   |   |   | Х | Х |
| D/B/O Savings                 |   |   |   |   |   |   | Х |
| Local Options Tax             |   |   |   |   |   |   | Х |
| Septage Revenue               |   |   |   |   |   |   | Х |





# **Delivery Options**

#### Types

- Design-Bid-Build
- Design-Build (DB) and Design-Build-Operate (DBO)
- Public Provide Partnership (P3)

#### Evaluation of Options

- Costs and Risks
- Evaluation of Prospective Bidder Pool
- Eligibility for SRF Financing
- Inflation and Cost Escalation Protections
- Phasing Implementation
- Contract Default Provisions
- Delivery (Design and Construction) Schedules
- Administrative Services (e.g. Management, Billing)
- Asset Management Provisions and Protections





# Summary

- Town Dedicated to Finalizing the Report to Meet Water Quality, Financial and Management Challenges
- The Hybrid Approach Blends the Proven Use of Sewers and the Innovative Use of Non-Traditional Technologies
- Town Using Water Quality Data, Financial Model and Stakeholder Input to Develop/Implement an Effective and Affordable Plan





# **Project Team**

- Orleans Water Quality Advisory Panel
- Water Resources
  Associates
- School for Marine Science and Technology
- Watershed Groups
- AECOM Technical Services, Inc.

- Biohabitats, Inc.
- Coastal Engineering
- FinePoint Associates
- MT Environmental Restoration
- Science Wares, Inc.
- The Abrahams Group
- Subsurface, Laboratory, etc.





# **Thank You**

# Questions

New England Water Environment Association January 23, 2017



