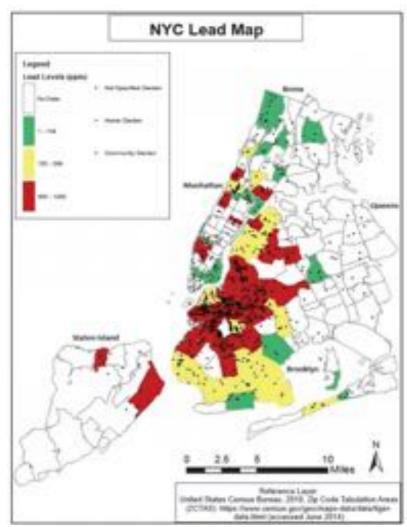
Organic Waste in Urban Agriculture: The New York City Clean Soil Bank Pilot Study

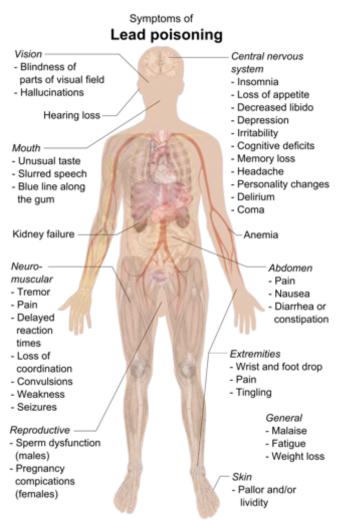
Sara Perl Egendorf Zhongqi Cheng

The Graduate Center and Brooklyn College of the City University of New York Department of Earth and Environmental Sciences NYC Urban Soils Institute



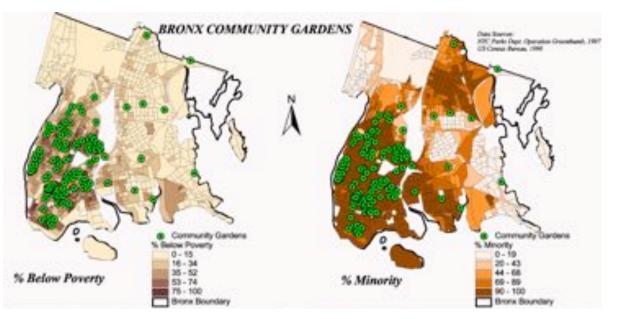
Brooklyn College

Urban Soils are Highly Contaminated with Lead (Pb)


- Community gardens and backyards have Pb levels above EPA standards
- Pb cannot be broken down or leached from soil
- Community gardeners and all urban residents are at risk for exposure

(Cheng et al., 2015)

Pb: 2nd Most Toxic Substance


- The Agency for Toxic Substances and Disease Registry (ATSDR) ranks Pb as second priority toxic substance
- Toxicity can cause learning disabilities, ADHD, seizures, coma, and death
- Children are most at risk
- In 2012, over 1,000 NYC children were newly identified with blood Pb toxicity (blood lead levels over 10ug/dL)

Mikael Häggström, https://commons.wikimedia.org/w/index.php?curid=40804069

Community Gardening and Environmental Justice

- Many urban community gardeners are people of color from low income backgrounds
- Community gardening provides access to healthy produce, physical activity, and community building
- Soil Pb contamination puts vulnerable populations at greater risk

http://www.lehman.edu/ deannss/geography/ images2/Gardens2.png

Remediation Options for Pb-Contaminated Soil

Excavation

Pro:

- Effective

- Con:
- Expensive
- Placement in landfill
- Requires new soil
- Pro:
- Effective
- Less expensive

Cap and Cover

Con:

Requires new soil Soil is finite and needed in native settings

Can we construct new soil

to remediate contamination and promote community gardening?

http://www.northjersey.com

The NYC Mayor's Office of Environmental Remediation (MOER) Clean Soil Bank (CSB)

Since 2013, MOER has exchanged 255,000 cubic yards of pristine glacial outwash sediments from NYC for development projects

> CSB Sediments are extensively tested for contaminants pre- and post-transport

> > Historically, excavated sediments were deposited in landfills

CSB Sediments used for study

CSB has eliminated 985,000 miles of truck travel, 245,000 gallons of diesel combustion, and 2,750 tons of CO2 emissions

But can they be used for gardening?

The Clean Soil Bank (CSB) Pilot Garden Study

Purpose:

- Examine use of CSB Sediments and compost as growing media
- Mitigate soil contaminant exposure
- Support NYC community gardening


Research Questions:

- 1. Are sediment / compost mixtures viable growing media?
- 2. Are experimental crops free from contaminants?

Garden 2, unplanted experimental beds

3. Are raised beds recontaminated over time?

CSB Pilot Study: A Collaboration

Limiting Factor: Clean Compost

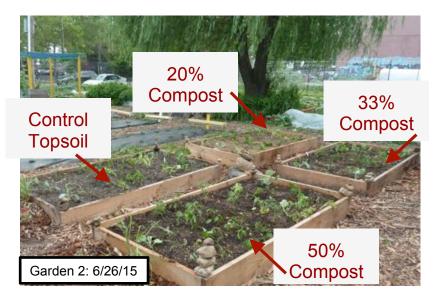
1st mulch / manure compost sampled 5/13/15:

230 mg/kg Pb

2nd mulch / manure / yard waste compost sampled 6/3/15:

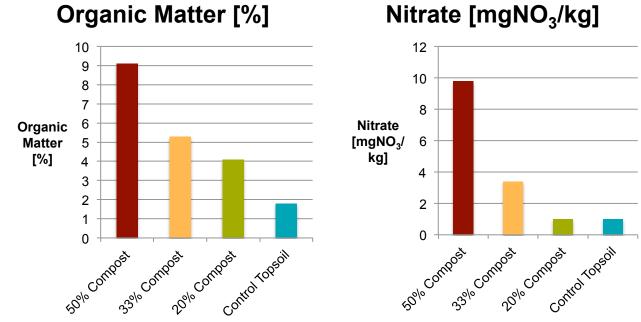
200 mg/kg Pb

3rd mulch / food waste compost sampled 5/5/15: 40 mg/kg Pb



Field Methods

 Built 4 raised beds in 2 community gardens; 1 bed in 3rd garden; placed landscape fabric between garden and raised bed soil 2. Mixed sediments with compost at three ratios (50%, 33%, 20%) and established control topsoil bed (soil used by GreenThumb for other garden beds) Planted consistent number and variety of crops in each bed, watered and tended to plants

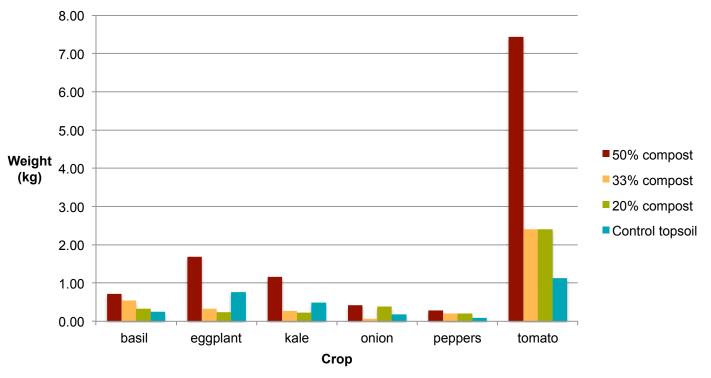


Lab Methods

June, 2015:	July-August, 2015:	September, 2015:	October, 2015:	July, 2016
Soil contaminant analyses, organic and inorganic	USDA Standard Soil Analyses	Plant tissue analysis for trace metals	Second soil contaminant analyses	Second USDA soil and trace
EPA Methods 8260C,	pH (1:1), Salts (1:2), Organic Content (LOI), Macronutrients		Plant tissue analysis for organic contaminants	metal analyses
8270D, 8081B, 8082A, 8151A, 6010C, 7196A, 7473	(KCI extract), Micronutrients (Modified Morgan)	EPA Methods 3052, 6010C	EPA Method 8270D	
	Brooklyn The City College	Brooklyn The City University College		Brooklyn the City College

Results: Soil Organic Matter and Nitrate for Garden 1 [July, 2015]

Higher initial nutrient availability in beds with greater percentages of compost


Results: Soil Parameters for Garden 1 [October 2015]

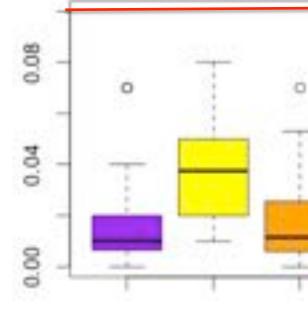
	рН	Conductivity (dS/m)	Texture (% Sand)
CSB Sediments	7.0	0.2	Sand (90%)
50% Compost	7.5	0.1	Sandy loam (70%)
33% Compost	7.0	0.15	Sandy loam (60%)
20% Compost	7.0	0.1	Loamy sand (80%)
Control Topsoil	8.0	0.16	Sandy loam (75%)

Texture, pH, and salts are within acceptable ranges for selected crops

Results: Total Agronomic Yield Gardens 1 and 2 [June-October, 2015]

50% compost beds produced higher yield than all others, including control soil

Results: Fruit / Root Crop Tissue Metals


[mgPb/kg fresh weight]

Lead Concentration in Fruit / Root Crop Tissues [mgPb/kg Fresh Weight]

Guidance Value set by European Commission:

.1 mg Pb /kg for fruits and non-leafy vegetables

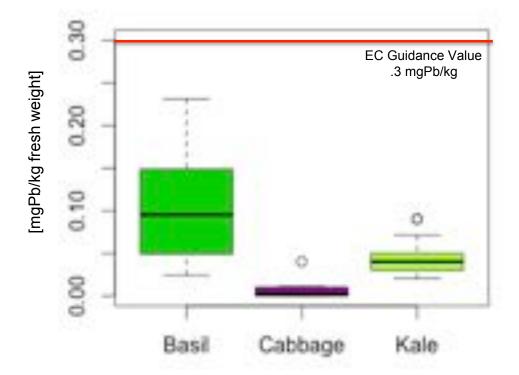
All tissue samples are well below this standard

Eggplant Onions Peppers

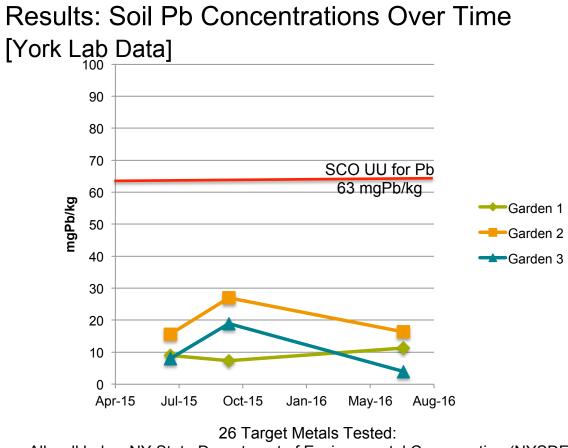
Tomato

EC Guidance Value

.1 mgPb/kg


Results: Vegetable Crop Tissue Metals

Crop Tissue Metals Lead Concentration in Leafy Vegetable Crop Tissues [mgPb/kg Fresh Weight]


Guidance Value set by European Commission:

.3 mg Pb /kg for leafy vegetables

All tissue samples are well below this standard

All well below NY State Department of Environmental Conservation (NYSDEC) Soil Cleanup Objectives Unrestricted Use (SCOUU) Criteria 160 VOCs, SVOCs, PCBs, and Pesticides Tested: All well below NYSDEC SCOUU Criteria

Project Significance

- CSB sediments can not only cover contaminants, but with compost they also support edible crops
- 50% compost mixtures produce higher yield than control topsoil
- Soil parameters are suitable for edible crops
- Crops show no evidence of contamination
- Soil metal concentrations remained very low over first year

Benefits and Next Steps:

- The Clean Soil Bank is a viable way to cap and cover contaminated soils, minimize associated risks, support edible plant growth, and enhance the many benefits of community gardening
- This program is being expanded. 66% of new buildings in NYC generate
 ~6,500 tons of clean soil on average
- There are sufficient clean native sediments to remediate ALL gardens in less than 1 year – with the correct logistics in place
- These sediments can be mixed with other organic residuals and biosolids
- More research is needed on CSB / organic residual blends

Acknowledgments

MOER:

Daniel Walsh Shana Holburton Samantha Morris Alysha Alfieri Lee Ilan

GreenThumb / NYC Parks

Nancy Kohn Rasheed Hislop Shawn Spencer Isak Mendes

Brooklyn Queens Land Trust:

Demetrice Mills

Community Gardeners:

Stanley Jones Katherine Bryant Yolanda Belcher Rochelle Sanders Lakecia Davis-Flueck Deborah Greig

Gowanus Canal Conservancy:

Richard Kampf Natasia Sidarta

Brooklyn College / Urban Soils Institute:

Hermine Huot Danielle Wagner Anya Paltseva Zulema Garcia-Blanco Igor Bronz Jan Mun Michael Grishtein Tatiana Morin

Project Interns:

Victor Flores Lisa Bloodgood **Tamar Saimbert** J.D. Rachid **Tiffany Mai** Fanny Mai Shruti Singh **Jocelyn Chen** Kelly Yuen **Uero** Liang Sophia Khoja LiLin Liu Zainab Salahudin Zenab Jamil Marzana Rafa Jasleen Kaur

Thank you for your attention...

Organic Waste in Urban Agriculture:

The New York City Clean Soil Bank Pilot Study

Sara Perl Egendorf Zhongqi Cheng

Brooklyn College of the City University of New York Department of Earth and Environmental Sciences NYC Urban Soils Institute

saraperle@gmail.com

Urban Soils Institute: www.usi.nyc