BOOM! Hydraulic Transient Problems – Emergency and Long-term Solutions for Lexington's Main Wastewater Pumping Station

Town of Lexington, Massachusetts

Presented by:
Kevin M. Olson, PE
NEWEA Collection System Specialty Conference
September 12, 2016

Project Team

Town of Lexington

- John Livsey, PE, Town Engineer
- Mike Flamang, PE, Senior Civil Engineer
- David Pavlik, Assistant Engineer
- William Hadley, DPW Director
- Ralph Pecora, Water and Sewer Supervisor

Wright-Pierce Team

- Kevin Olson, PE, Project Manager
- Barry Yaceshyn, PE, Lead Project Engineer
- Amanda Ruggiero, PE, Project Engineer
- Northwest Hydraulic Consultants (NHC)

General Contractors – Methuen Const. and W&S CMR

Presentation Outline

- Introduction and Background
- Existing Conditions
- The Problem
- Analyses/Evaluations Performed
- Solutions
- Questions and Discussion

Introduction and Background

- Formerly Known as "North Lexington Pump Station"
- Largest of 10 Stations in the System
- "Backbone" of the System 60 Percent of Pumped Flow
- Complete Upgrade in 1993 (23 years ago)
- Located Between On/Off Ramps to Route 95/128 at Route 4/225
- MWRA Sewer Community

Existing Pump Station Specifics

Main Wastewater Pumping Station

- Custom, Flooded Suction Type Station
- Two Levels Below Grade (pump room 38 feet below grade)
- Three 150 Hp, Constant Speed Pumps
- Air-cushioned Check Valves
- Dual Wetwells
- Influent Grinding via Channel Grinders
- Flow Measurement via Doppler Flow Meter
- Mission Communication Alarm System

Current Pump Station Flows/Capacity

- 8 mgd (5,500 gpm) Total Flow Capacity
 - Current/Future Average Flow ~ 1.2/1.6 mgd
 - Current/Future Peak Flow ~ 3.9/5.4 mgd
- Pumps Rated at 3,500 gpm at 135 Feet
- Drawdown Testing Results
 - Pump 1 3,060 gpm
 - Pump 2 2,500 gpm
 - Pump 3 2,740 gpm
 - Two in Parallel 4,800 gpm (pumps 1 and 2)

Pumps Operate in Lead, Lag, Standby Mode

Future Pump Station Flows/Capacity

<u>Item</u>	Flow (gpm)
Measured Average Daily Flow	800
Peaking Factor	3.4
Estimated Existing Peak Flow	2,700
Assumed Growth for this PS	37%
Estimated Future Peak Flow	3,700
Pump Capacity	3,500

Force Main Specifics

- 5,850 Linear Feet
- 24-inch Diameter DI Pipe
- Route is Largely Through Residential Neighborhoods

Force Main Discharge Chamber

- Discharges to Dual Gravity Sewers on Hamilton Road
- Two Intermediate High and Low Points with Manual Air Release Valves

The Problem

- Noises Reported by Residents Along Force Main Route (primarily Gleason Road) – Fall of 2014
- Vibration Reported by Residents
- Noise and Vibration Causing Quality of Life Issues
- Residents Pushed for a Quick Solution

Initial Questions

- Was this a New Condition, or Occurring for Years?
- Was this a Problem Along the Entire FM, or Just Gleason Road Area?
- Was the Existing Force Main at Risk of Imminent Failure?
- How Quickly could the Problem be Addressed?

Initial System Observations

- Noise Associated with Pump Shut-down
- Noise Observed at Discharge Manhole, FM High Points, Homes and at PS discharge piping
- Air Cushioned Swing Check Valves <u>not</u> "Slamming" Shut
- No "Soft Starts or Stops"
- Air Release Blow-offs at FM High Points were Manually-Operated Valves with Drain Piping

Force Main Discharge Video

 Video of Force Main Discharge Prior to Implementing any "Fix" (February 2015)

Evaluations and Solution Implementation

 Develop <u>Immediate</u> Solutions to Minimize Noise to Residents

- 2. Identify and Evaluate Longer-term Solutions
 - Including Hydraulic Transient Analysis (Modeling) for Surge Protection
- 3. Condition Assessment of Existing FM System
 - Town Performed Acoustic Testing of System
- Design, Bid and Construct Long-term Solutions

Hydraulic Transient Analysis

 Transient Pressures Could Cause Damage or Force Main Failure and Contribute to Noise/Vibrations

Computer Model Developed and Run for

Different Scenarios

- Planned Pump Shut-down (similar to power failure)
- 2. Power Failure
- Pump Start-up

Transient Modeling Results

- Following Planned Pump Shut-down, a Rapid Drop in Flow Rate and Pressure Results, Causing a Low Pressure Wave (drop)
- Low Pressure Wave Propagates out from Station to Discharge Chamber
- Minimum HGL (Elevation) was shown to Drop Sufficiently to Create Vapor Pressure throughout Force Main
- Repressurization of the Force Main by Flow Reversal (Water Hammer Wave Reflection) Causes Vapor Cavities to Collapse and Produce Significant Positive Pressures that can Damage Piping and Contribute to Noise/Vibration

Pump Shutdown without Surge Protection and Air-Vacuum Control

Surge Control Alternatives Modeled

Strategy 1

- Install Eight Air-Vacuum Relief Valves on the FM
- Install Surge Relief Valve on the Discharge Header at PS

Strategy 2

 Install 2.5-foot Diameter Flywheel on Each Pump/Motor Unit

Strategy 3

- Install a 396 ft³ (2,960 gallon)
 Surge Tank at the Pump Station
- Install Two Air-Vacuum Relief Valves on the FM
- Install Bottom-Mounted Dashpot, "Oil-Cushioned" Check Valves

Modeling Summary

- Strategy 1 (air-vacuum relief valves)
 - Least Effective at Attenuating Pressure Waves and Noise
 - Requires High Level of Maintenance
- Strategy 2 (flywheels)
 - Moderately Effective at Attenuating Pressure Waves and Noise
 - Harmonic Issues if Installed with VFD's
- Strategy 3 (surge tank)
 - Most Effective at Attenuating Pressure Waves and Noise
 - Replacement of Manual Air Release Valves with Automatic Air/ Vacuum Relief Valves
 - Replace Air-Cushioned Check Valves with Oil-Cushioned Type

Note – Installation of VFD's are not a Solution for Surge Protection

Pump Shutdown with Pressurized Surge Tank and Air-Vacuum Control

Force Main Condition Assessment

- Considered Several Techniques:
 - CCTV Inspection of Force Main
 - Excavate Piping, Cut-out Coupons, Visual Inspection, Thickness Testing and Soils Testing
 - Smart Ball[®] Force Main Assessment
 - Pipe Wall Assessment
 - Leak and Gas Pocket Detection
 - Pigging Standard and Ice-pigging
 - Combination of Techniques

Force Main Condition Assessment Challenges

- CCTV Preferred but Not Feasible Due to:
 - Inability to By-pass Pump Current Flow
 - Time between Pump Starts
 - Only Partial Inspection from Discharge End (not critical area)
- Excavation and Destructive Testing
 - "Snapshot" of the Force Main
 - Concerns About Cutting into Pipe

- Conventional Pigging concerns About Getting Pig "Stuck"
- Ice Pigging High Cost; Small Segment; Concerns about Pigging Effectiveness

Force Main Condition Assessment - Approach

- Perform Testing During Construction of Longer-Term Solutions
 - At both FM Relative High Points UT Pipe and Soils Testing
 - Check FM Pipe Thickness (Pipe Coupon) During Installation of Automatic Air-Vacuum Valves
- Perform Smart Ball® Testing of entire FM

Smart Ball® Testing

 Collected Acoustic and Pipe Wall Assessment Data (Magnetic Changes)

 Sensors (4)Located Along Force Main for Tracking

- Ball Records Flow Velocity Through System
- Continuous and Constant Flow During Test
- No Air Pockets, Identified 19 Anomalies (small-medium)
 - Recommended to Excavate and Assess FM at 4 Locations

Solutions Implemented

- Immediate (Emergency) Solutions
 - Install VFD on Pump No. 2 Created "soft start/stop
 - Immediate Positive Affect
 - Communicate Weekly with Residents
 - Run Pumps at Full Speed Occasionally to Flush FM
- Longer-Term Solutions
 - Install Surge Tank on Force Main Header at PS
 - Install New Automatic Air-Vacuum Valves on FM
 - Install New Oil-Cushioned Check Valves
 - Install VFD's and New Motors on all Pumps
 - Install New Control System
 - Install New Pig-Launch Assembly at PS

Solution Implementation Timeline

- Immediate Solutions January/February 2015
- Longer-Term Solutions
 - Hydraulic Transient Analysis
 January–March 2015
 - Design (Plans & Specifications)
 March-June 2015
 - Bidding July/August 2015
 - Construction September 2015 September 2016
 - Equipment Procurement September 2015 May 2016
 - Construction May September 2016

Project Costs

- Immediate Solutions \$95,000
- Longer-Term Solutions
 - Construction (GC) \$1,316,000
 - Engineering & Admin. Costs \$357,000
- Total Project Cost \$1,798,000

Other Project Challenges

- Resident Communications and Coordination
- Immediate Solution Timeframe
- Additional Items During Construction
 - Line Stop and Valve Required
 - HVAC Additions
 - Emergency Lighting Updated
 - Mission Alarm System Improvements

Project Outcome

- Immediate Solutions and Resident Communication were Critical
- Hydraulic Transient Modeling Provided Value
- Longer-Term Solutions
 - VFD's and Controls in Operation
 - Check Valves in Operation
 - FM Air and Vacuum Valves in Operation
 - Surge Tank Ready, but not yet in Operation
 - Pig Launch Ready for Use

Emergency VFD Installation

Force Main Air-Vacuum Valves and Drains

Force Main UT Testing

Force Main UT Testing

Smart Ball Testing

NEWEA Collection System Specialty Conference

Pump Station Surge Tank

NEWEA Collection System Specialty Conference

Pump Station Controls

Pump Station Oil-Cushioned Check Valves

Pump Station Pig Launch

Questions / Discussion

Power Failure without Surge Protection (Movie)

Power Failure with Pressurized Surge Tank (Movie)

Pump Station Force Main Line Stop and Valve

