

Chloramination: an alternative disinfection method to achieve discharge permit limits

, K. Ramalingam¹, M. Orpianesi², J. Fillos¹, A. Deur², X. Xu¹, ¹City College of New York ²New York City Environmental Protection

Outline

- Introduction
- Objectives
- Pilot Setup
- Influent characterization
- Performance and discussion
- Conclusions
- Full-Scale Application at the Hunts Point WRRF

Introduction

HP pilot study drivers:

- Proposed HP WRRF TRC discharge target is 0.57 mg as Cl₂/
 L.
- SPDES permit: Fecal Coliform 30-day geometric mean is not to exceed 200 CFU/100mL.
- DEC Proposed enterococcus concentration is not to exceed
 35 CFU/100 ml geometric mean.
- Reduction in hypo consumption

HP pilot study definition:

Chlorination: hypo addition

Chloramination: hypo addition & supplement ammonia-N

OBJECTIVES

- Evaluate the impact of Nitrogen species on disinfection in BNR plants.
- Reduce chlorine demand by
 - Controlling the NO₂-N/NH₃-N by addition of Ammonia-N
 - Minimizing the hypo dosage
- Compare the use of enterococcus to the traditional fecal coliform bacteria as the indicator for effective disinfection.
- **❖** Determine the minimum value of "CT" required to comply with the discharge permit limits.

Environmental Protection

Location of the Pilot Facility

Copy from google map

Pilot Facility layout

Environmental Protection

Instrumentation Available

Prominent

HACH

Analytical methods

Parameters	Sampling frequency
Free Chlorine (mg Cl ₂ /L)	
Total chlorine(mg Cl ₂ /L)	
Monochloramine (mg Cl ₂ /L)	
Ammonia (mg N/L)	Twice a day (10AM & 2PM)
Nitrite (mg N/L)	
Enterococci (CFU/100mL)	
Fecal coliforms (CFU/100mL)	
COD (mg/L)	
Total alkalinity (mg/L as CaCO ₃)	Weekly or rain event
TSS (mg/L)	
рН	Spot Checks

Note: All methods are adapted from EPA or Standard methods.

Pilot Timeline

Pilot Influent characterization

The City College of New York

2016 Joint NEWEA/NYWEA Spring Meeting

Pilot Influent nitrogen species characterization

Characterization of pilot influent bacteria indicators

CFU/100mL	FC	Entero.
Ave.	4.14E+04	1.06E+04
stdev	7.92E+04	1.22E+04
Min.	4.00E+03	3.00E+02
Max.	6.00E+05	7.06E+04

Summary: Pilot Influent characterization

	NH ₃ -N	NO ₂ -N	F. C.	Entero.
	(mg N/L)	(mg N/L)	(CFU/100mL)	(CFU/100mL)
Ave.± stdev	1.05±1.12	0.74±0.42	4.14x10 ⁴ ±7.92x10 ⁴	1.06x10 ⁴ ±1.22x10 ⁴

- Ammonia-N has large variance. On many occasions, nitrite-N is higher than ammonia-N.
- The Fecal coliform population is about 4 times that of the enterococcus in the final settling tank effluent.

Pilot Performance minimum TRC experiment

Performance as measured against Target TRC

Note: grab sample for TRC and NH₂Cl.

Chlorine demand recorded during the study period

Note: Data based on daily grab samples.

Factors impacting total chlorine demand

- Hypo dosage
- Nitrite-N/ammonia-N

Disinfection performance

Disinfection performance based on bacteria indicators

Both indicators, F.C and enter., show exceedances during the same period when TRC ave. = $0.15 \text{ mg Cl}_2/L$. Disinfection criteria satisfied when TRC is above $0.3 \text{ mg Cl}_2/L$.

Optimum CT

Minimum CT required for efficient disinfection is 10 mg/L \cdot min.

CT=10 mg $Cl_2/L \cdot min T= 30 min, TRC=0.33 mg <math>Cl_2/L$

Proposed TRC=0.57 mg Cl₂/L, T= 30 min, CT=17.1 mg/L·min

Strategy to optimize hypo dosage

Conclusions

- Chloramination by supplementing ammonia-N is a successful method to disinfect the effluent from BNR plants.
- To reduce chlorine demand, the ratio of NO₂-N to NH₃-N to be maintained at 1 or less by supplementing ammonia-N and with this the hypo dosage could be in the range of 1-1.5 mg Cl₂/L.
- Both fecal coliform and enterococcus bacteria can be used as indicators of effective disinfection.
- To achieve the proposed TRC=0.57 mg Cl_2/L , CT=17.1 mg $\text{Cl}_2/\text{L} \cdot \text{min}$ is required with a detention time of 30 minutes. However, the minimum value of CT to assure compliance of the discharge permit limits was determined to be 10 mg/L \cdot min.

Lessons Learned from Pilot Operation And applied to main plant

 Chlorine residual between 0.25 mg/l and 0.40 mg/l is sufficient to provide bacterial kill

Ratio NO₂/NH₃ has large impact on performance

Lessons Learned from Pilot Operation And applied to main plant

SYSTEM

- New accurate metering system
- Tuning of automatic controls

PROCESS

- Control aeration and step-feed to limit nitrification
- Operators Training

From pilot to full scale

New Metering Pumps – Chemical Induction Mixers – Automatic Controls

NO₂-N/NH₃-N affects hypo consumption at HP WWTP

NO₂-N/NH₃-N affects hypo consumption at HP WWTP

Monthly Cost \$

Wards Island mg/l

Challenges

- Operators training
 - Maintain Constant Dose instead of constant residual
- Operation
 - Set lower residual target disinfect, not sanitize
 - Limit Nitrification in pass D to control ratio of NO₂/NH₃
 - Tune automatic dosage controls, preference to Flow-Pacing

Challenges

DOSE = Demand + Residual

Effect of NO2/NH3 on demand and Residual

NO2/NH3 →	0.2	1.0	2.0
Dose (mg/l)	TRC (mg/l)	TRC (mg/l)	TRC (mg/l)
1.0	0.35	0.20	0.15
1.5	0.55	0.30	0.20
2.0	0.60	0.40	0.30

Conclusions

- An accurate metering system, mixers, and some form of automation are necessary to achieve reliable disinfection.
- Dose control is more efficient than Residual control.
- Residual trimming, when the NO₂-N to NH₃-N ratio changes during the day, causes waste of chemical.
- In BNR plants, operators understanding of the process is fundamental.