DECENTRALIZED TREATMENT NETWORK HELPS MARATHON WIN THE RACE TO MEET FLORIDA ADVANCED WATER TREATMENT REQUIREMENTS

Friday, June 10, 16

Agenda

PAGE 2

Agenda

PAGE 3

Protection of the Florida Keys Vital to the Region

Location of Marathon, FL

Florida Keys Marine Sanctuary

NEWEA/NYWEA Joint Spring Meeting Date: June 10, 2016

History of Treatment in Marathon, FL

- At the time of incorporation one secondary treatment plant existed. A majority of the service area utilized septic
- Florida Keys Aquaduct Authority Managed Sewer System
- State of Florida mandated upgrades to Advanced Water Treatment Standards
- Initial proposals came in at \$180 million

Chosen Path Forward

- City took over control of sewer system and hired a consultant
- Broke Marathon into seven service areas
- Chose a decentralized treatment network with a vacuum sewer system
- Implemented a network of package treatment plants to meet the mandated requirements

Marathon Plant Locations

Advantages of Decentralized Treatment

- Final wastewater infrustructure cost was \$97 million
- Worked with the State of Florida revolving loan program to provide \$85 million in loans for the project. The remaining cost was covered by grants
- Total assessment per household was \$5700
- Savings of more than \$80 million vs. the centralized treatment option

Agenda

Omnipac[®] SBR Overview

OMNIPAC[®] Field Erected SBR Construction

Field Erect Treatment Plant

- Pre-engineered
- Factory built (pre-fabricated steel rings)
- Can be installed by supplier or local contractor
- Contains inner ring with hydrostatic bulkheads
- Field painted

Concrete Pad and Initial Ring

NEWEA/NYWEA Joint Spring Meeting Date: June 10, 2016

Pre-Fabricated Steel Rings and Bulkheads

PAGE 17

Modular Placement

Manways

Tertiary Filter and Site Construction

Omnipac Internals

Internal Equipment – Jet Aeration

NEWEA/NYWEA Joint Spring Meeting Date: June 10, 2016

Why Jet Aeration Was Chosen

Wet Test

Date: June 10, 2016

SBR Tank Full

TES Filters

Reclaimed Water

Marathon Omnipac SBR Layout

Date: June 10, 2016

Advantages of the Omnipac Field Erected SBR

Agenda

Process Parameters

Process Parameters (mg/L)				
		SBR	TES Filter	
	Influent	Effluent	Effluent	
BOD	250	10	5	
TSS	250	10	5	
TKN	60			
NH4	40	1		
TN		5	3	
ТР	8	1	1	

Marathon Flows and Loads

	Design Flow	Peak Design Flow	Design Loading	Current Loading	Current Capacity
	(MGD)	(MGD)	(lbs/day)	(lbs/day)	(%)
Area 3	0.25	0.81	521	324	62
Area 4	0.40	1.30	834	334	40
Area 5	0.45	1.46	938	321	34
Area 6	0.20	0.65	417	172	41
Area 7	0.20	0.65	417	26	6

PAGE 32

Area #4 Results

Percent Removal

	% Remova	l		
	BOD	TSS	TN	TP
Area 3	99.5%	99.7%	98.1%	97.9%
Area 4	99.4%	99.6%	96.9%	96.8%
Area 5	99.5%	99.4%	98.4%	96.7%
Area 6	99.4%	99.7%	98.0%	95.4%
Area 7	99.2%	97.7%	96.6%	96.1%

PAGE 34

Marathon Average Effluent Values

	Eff. BOD	Eff. TSS	Eff. TN	Eff. TP	Eff NH3
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Area 3	2.59	1.88	1.68	0.34	0.15
Area 4	1.89	2.10	1.78	0.37	0.03
Area 5	1.12	1.63	1.10	0.30	0.02
Area 6	1.83	1.41	1.30	0.53	0.04
Area 7	1.76	3.86	2.92	0.43	0.24

Agenda

Study by Florida International University

 Removal of cesspits and septic systems resulted in 77% removal of fecal coliform 57% removal of enterococci in the adjacent canals 4 years after construction!

Marathon Sanitary Upgrade Project Awards

- 2008 EPA PISCES AWARD
- 2012 State of Florida Department of Environmetnal Protection Plant Operations Excellence Award
- 2012 Peak Peformance Award from National Association of Clean Water Agencies
- 2013 "Environmental Project of the Year" for projects > \$75 Million by the American Public Works Association (APWA)
- 2013 Weiler Engineering received the "National Consultant of the Year" by the APWA for the Marathon Project

Omnipac[®] SBR Systems exceed expectations in Marathon, FL

Marathon Florida

Turn Key Solution from Single Supplier
Distributed Treatment Architecture
Exceeds Florida AWT (5/5/3/1) Effluent Requirements
Storm Flow Capability
Short Construction/Delivery Schedule

Conclusion

Decentralized facilities compared to single regional facility				
Treatment Capacity				
Storm Flow				
Additional footprint				
Nutrient Removal				
Construction Time	Ļ	33%		
Capital Costs	Ļ	46%		

THANK YOU!

CITY OF MARATHON, FL WEILER ENGINEERING

www.evoqua.com