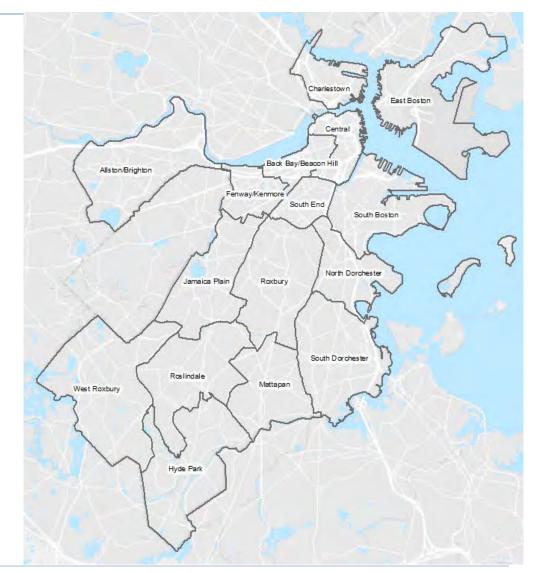
NEWEA & NYWEA Joint Spring Meeting 2016

MANAGING BOSTON'S INVESTMENTS IN BURIED INFRASTRUCTURE THROUGH SYSTEMATIC EVALUATION OF CONDITION AND RISK

Presented By: Jacob Peck/CH2M & Chase Berkeley/BWSC


City of Boston

City of Boston:

- 48 square miles
- 655,884 est. population (2014)
- Largest city in New England
- Founded in 1630

BWSC is responsible for:

- 800+ miles of sanitary/combined
- 600+ miles of storm
- 80,000+ structures
 - Manholes
 - Catch Basins
 - Regulators
 - Tide Gates
 - Siphons
 - Outfalls

Boston Water & Sewer Commission (BWSC) Wastewater & Storm Drain Facilities Plan

<u>Objective</u> was to develop facility plans for the City's sewer and storm drain systems that are aligned with the Commission's longterm service goals and supported by effective operations, maintenance, and engineering practices.

Main deliverable was a 25-year plan for system upgrades, <u>capital</u> <u>improvements and system maintenance</u>.

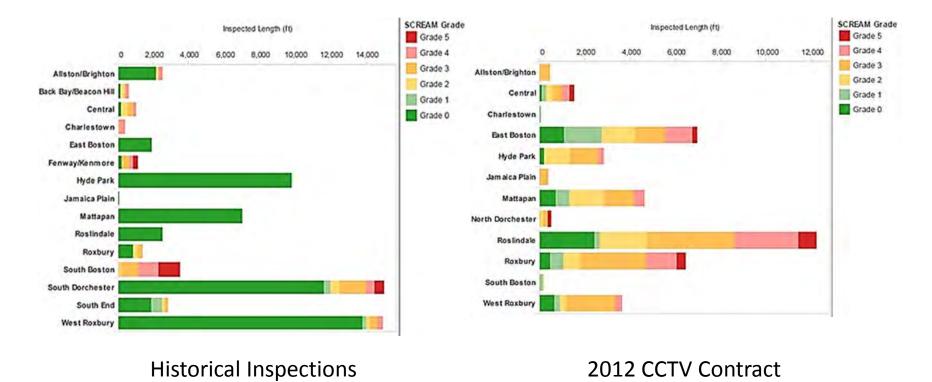
11 tasks varying from regulatory to operational maintenance to climate strategies;

Task D – Asset Condition Assessments

Asset Condition Assessments

The primary goal of the asset condition assessments is to gain an understanding of the physical characteristics of the system, including both conditions that may require maintenance and the structural condition of the asset.

The simplified approach:

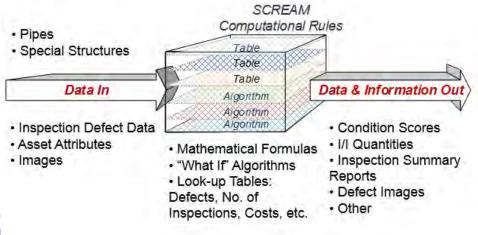

- Conduct a Historical Review understand existing inspection data and processes. Determine recent CCTV work in order not to duplicate.
 - The past five years of inspection records were analyzed.
- Implement SCREAM Condition Assessment Tool use SCREAM to store, score and analyze inspection data. Identify capital improvement projects.
- **Conduct Pipe Inspections** project initially included 23 miles of CCTV

Asset Condition Assessments – Historical Review

- Finding 1: Methods used for these inspections and the management of data related to the inspections has varied significantly.
 - Not all data was incorporated into CASSWORKS (CMMS).
- Finding 2: Significant CCTV or related work completed in recent years that cannot be linked to GIS.
 - Only 53% could be mapped to GIS.

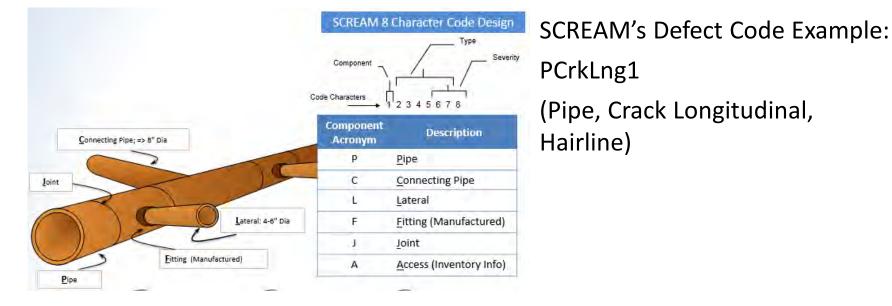
Asset Condition Assessments – Historical Review

- Finding 3: Historical inspections that were able to be mapped were uploaded and scored in SCREAM.
 - Score results were misleading because of poor data.



SCREAM is an industry-standard tool for condition assessments and analytical/asset condition scoring.

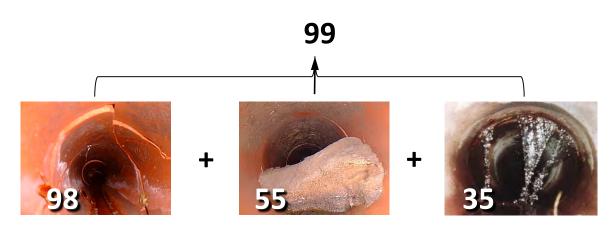
SCREAM is designed to:


- Collect/compile condition assessment field data (both pipes and special structures) – centralized database.
- Score the inspections.
- Provide a link to view videos and photos.
- Prioritize infrastructure assets and summarize info through web reports.
- Provide input for risk calculations.
- Create work orders with summary information about inspections.

System Condition Risk Enhanced Assessment Model

SCREAM's Defect Coding System

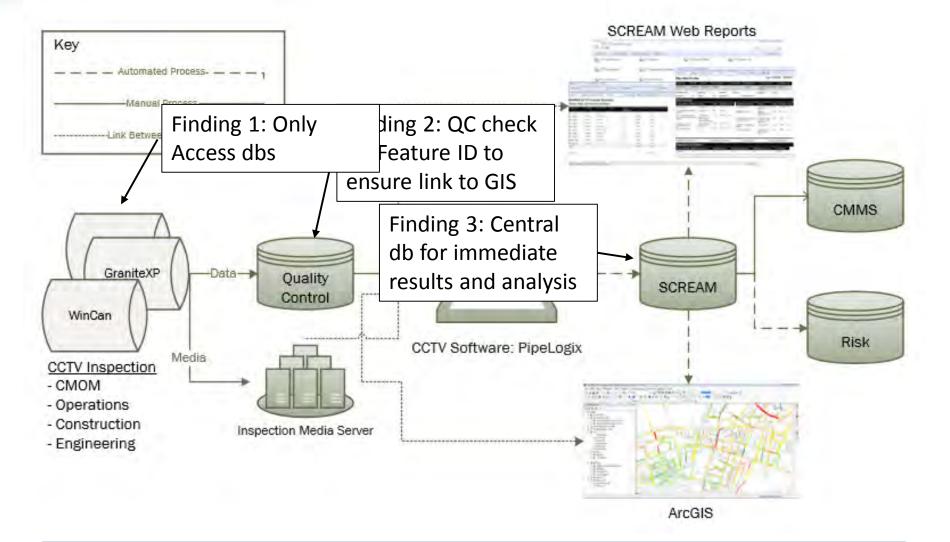
- Provides a quick, consistent way for an operator to convert the defect image into the appropriate defect code
- Codes include structural, maintenance & inflow/infiltration conditions
- Extensive list (~700 defect codes) to cover all possible defects
- Uses 4-8 alphanumeric characters



SCREAM's Scoring System

- Scores on a 1-100 scale which provides more granularity
 - 1 = new condition; 100 = failed condition
- Starts with the score of the worst defect and incrementally adds the others

DS = max(DS)+ ((100-max(DS)*(A*Weight A+B*Weight))


Analogy to medical triage

Scale: 1 (new) -100 (failed)

Triage is the process of determining the priority of patients' treatments based on the severity of their condition. http://en.wikipedia.org/wiki/Triage

Asset Condition Assessments – Pipe Inspections

- Inspections conducted from October 2012 through June 2014 throughout Boston.
- A pilot inspection run was performed at four locations, allowing refinement of the SCREAM inspection process.
- Once corrections were implemented, work resumed and a total of 9.43 miles of sewers were inspected.
 - Pre-populating Granite XP database with GIS
 - Requiring pictures for major defects

Inspections summarized by neighborhood

Allston/Brighton

West Roxbury

95% of the inspections linked tothe correct pipe in GIS.5% of the inspections discoveredunmapped manholes.

5

arbor Islands

20

Neighborhood

SCREAM Grade 0

SCREAM Grade 1 SCREAM Grade 2 SCREAM Grade 3 SCREAM Grade 4 SCREAM Grade 5

SCREAM Scores

Legend

East Boston

South Boston

LANN

Charlest

Back Bay/Beacon Hill

South End

Fenway/Kenmore

Roxbury

Mattapan

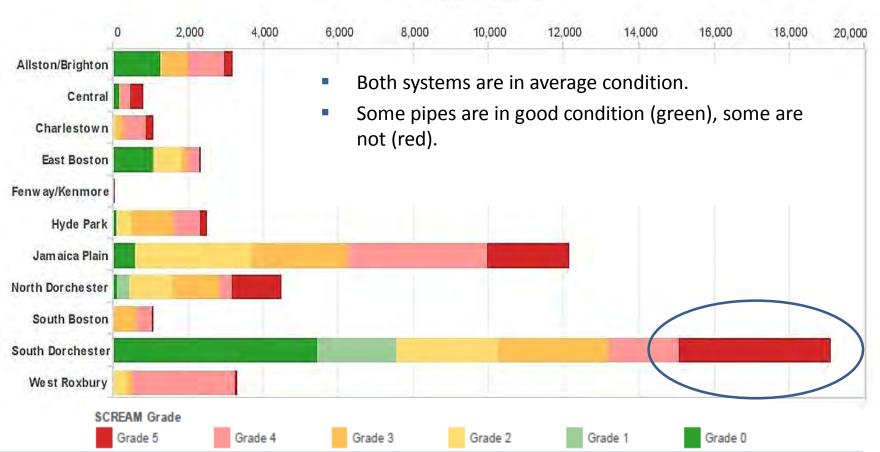
1

Jamaica Plain

Roslindale

Hyde Park

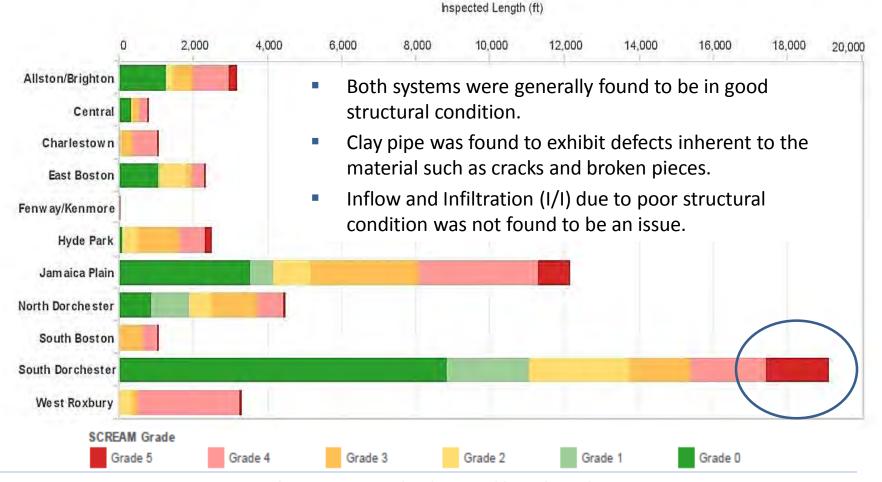
Centra


North Dorchester

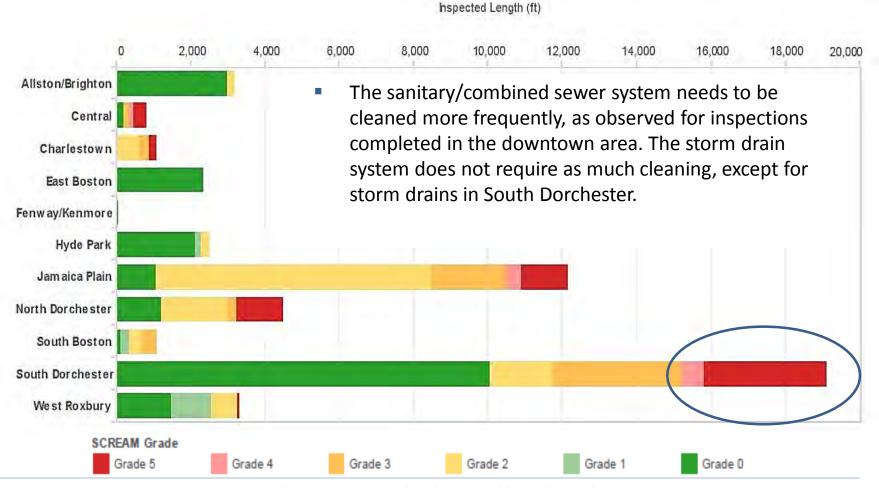
South Dorcheste

Inspections through June 2014

Asset Condition Assessments – Pipe Inspection Results

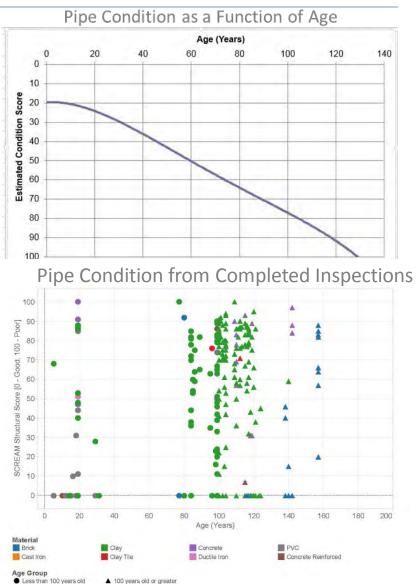

SCREAM Total Score = Structural + Maintenance + I/I

hspected Length (ft)


Asset Condition Assessments – Pipe Inspection Results

SCREAM Structural Score = Structural + I/I

Asset Condition Assessments – Pipe Inspection Results


SCREAM Maintenance Score = Maintenance

Comprehensive, Integrated and Sustainable Facilities Plan

Asset Condition Assessments – Pipe Inspection Results: Sanitary/Combined

- There is not a strong correlation between age and condition.
- Decay curves may not address real-world factors that influence the condition of an asset
- Inspection data provides a better measure of impacts related to:
 - **Environmental Factors**
 - Installation
 - **Operating Practices**
 - Maintenance

Less than 100 years old.

Is this enough to develop a CIP? What about long-term?

Classic Risk Equation Was Used to Calculating BWSC Assets' Risk Scores

Risk = consequencexlikelihoodof failureof failure

How severe are the consequences of failure?

How likely is it for the infrastructure to fail?

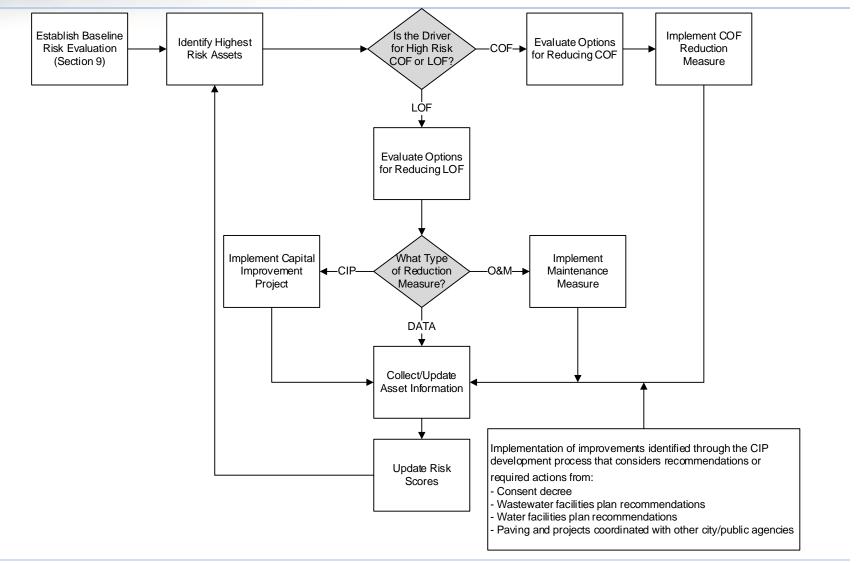
- Quantify the consequence associated with failure
- Quantify the likelihood of failure
- Use risk equation to quantify relative risks of assets

COF and LOF score ranges from 1 to 10 Risk Scores may range from 1 to 100

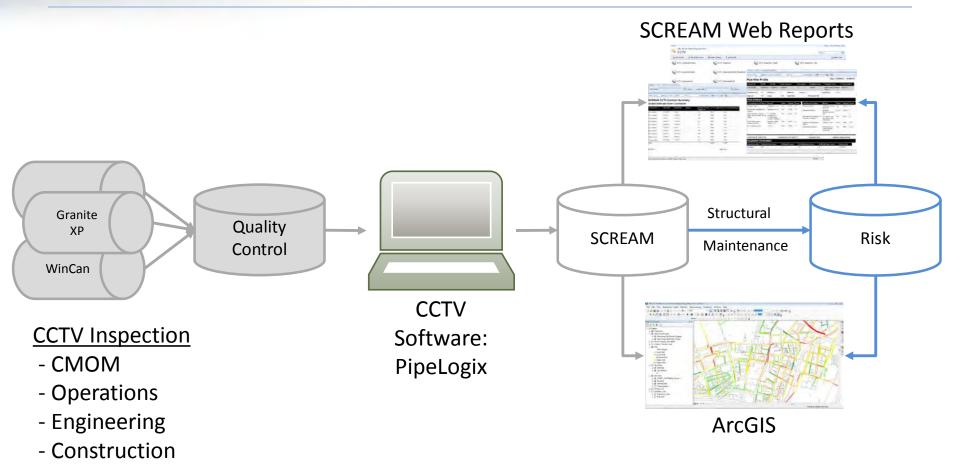
Risk Matrices

Consequence of Failure (COF)	Likelihood of Failure (LOF)
Financial (cost of repair/replacement)	Physical Condition (observed or predicted)
	- Decay Curves
	- SCREAM Inspection
Public Health and Regulatory	Maintenance (observed or historic)
	- CASSWORKS Emergency WOS
	- SCREAM Inspection
Loss of Service: Critical and High-Volume	Wet Weather Performance
Customer Service Impact	
Public Image	Sediment Build-up
	- Sag if found during an inspection
Environmental Impacts	Corrosion

- BWSC GIS
 - Size, Material, Location
- MassGIS
 - Critical Customers


- Hydraulic Model
- Pipe Slope Design Standards
- Water Distribution Study

Risk Assessment -Risk Reduction Strategies


Asset Management is an integrated set of processes to minimize the lifecycle costs of owning, operating and maintaining assets, at an acceptable level of risk, while continuously delivering established levels of service.

Sever	е	10	20	30	40	50	60	70	80	90	100	
		9	18	27	36	45	54	63	72		90	
		8	16	24	32	4	40	56	64	72	80	
↑ Moder	rate	7	14	21	28	35	42	49	56	63	70	
Consequence		6	12	18	24	30	36	42	48	54	60	
edn		5	10	15	20	25	30	35	40	45	50	
Suo Low		4	8	12	16	20	24	28	32	36	40	
0		3	6	9	12	15	18	21	24	27	30	
		2	4	6	8	10	12	14	16	18	20	
Neglig	gible	1	2	3	4	5	6	7	8	9	10	
		Negligible			r Possible	.ikelil	nood	 ↓ Likely 			Very Likely	

Risk Assessment -Risk Reduction Workflow Process

Risk Assessment – Risk Assessment Tool

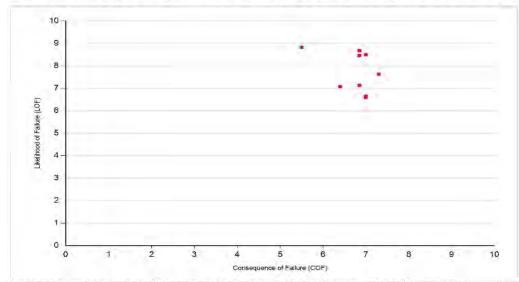
Risk-based Prioritization – Planning CCTV Inspections

1.

2.

3.

Where to CCTV next and have t Identify $\square \times$ Identify from: <Top-most layer> Ŧ Ability to use systematic proces Inspections inspection that incorporates con BWSC BWSC **Previously Completed** \[<\br/>
\] Inspections – recorded Location: 770, 177. 457 2, 935, 167. 157 Feet Main Project in SCREAM ving Program Field Value LastCCTVID 2067 **Risk Scores** RevDate 4/1/2014 14-303-009 Outside Factors – as has ContractNo SCREAMStructScore_Fixed 70 SCREAMMaintScore_Fixed been done historically; 27 SCREAMIIScore Fixed 43 planned development SCREAMTotalScore_Fixed 71 SCREAMCCTVScoreCategory Fixed 3 coordination with other CCTVPipeID_Varchar 1410530469 CCTVPipeID Float 1410530469 public works projects; CCTVPipeID Decimal 1410530469 http://ntsv1/scream/CCTV_Videos/14JMH37_14Jl 🖇 Video climate change http://bosgh8tsy1/ReportServer_SQL2012?/CCT\ 8 DefectLog 102.258171 Snape Length considerations 111 0.4 Identified 2 features


Risk-based Prioritization – Capital Improvement Projects

Pipe Risk Report

Boston Water and Sewer Commission

Number of Pipes: 9

In the chart, click on a point to see the risk profile. In the table, click on the Feature ID to see the risk profile or click on the inspection date to see the inspection

Quickly find the highest risk pipes driven by structural issues

Neighborhood	Tributary Area	P-Connection	Feature ID	US MH	DS MH	Age (yr)	Diam (in)	Material	Length (ft)	LOF	co	Ris	Risk Category	Maintenance	Condition	ast Inspection
Central	Boston Main Drainage Tunnel	BS-001-₽	2512530326	25LMH202	25LMH203	138	15	Unknown	10	-	8.50	7.00	60 Highest Risk	10.	0 8.80	2/10/2013
Central	Boston Main Drainage Tunnel	BS-001-P	2311530500	23KMH33	23KMH34	110	28	Non-Reinforced Concrete	123	2	8.68	6.85	59 Highest Risk	10.	0 7.80	3/2 <u>9/2013</u>
Central	Boston Main Drainage Tunnel	BS-001-P	2311530182	23KMH32	23KMH33	110	28	Non-Reinforced Concrete	207		8.46	6.85	58 Highest Risk	9.	3.30	<u>#15/2013</u>
Central	Boston Main Drainage Tunnel	65-001-P	2311530149	23KMH37	23KWC38	110	32	Non-Reinforced Concrete	18	100	7.63	7.30	56 Highest Risk	10.	5.70	1/14/2013
Central	Boston Main Drainage Tunnel	65-001-P	2311530522	23KMH22	23KMH32	110	28	Asbestos Cement	132	1.1	7.13	6.85	49 Highest Risk	7.	6.90	<u>\$/15/2013</u>
South Durchester	Columbus Park Connection	6D-009, MB-001-P	1113530044	11MMH12	11MMH11	109	15	Vihilied Clay	318	22	8,83	5.50	49 Highest Risk	10.	9.90	5/21/2013
Contral	Boston Main Drainage Tunnel	6S-001-P	2411530303	24KMH355	24KMH355	156	28	Brick	115		6.65	7.00	47 Highest Risk	2)	0 8,10	<u>\$/4/2013</u>
Central	Boston Main Drainage Tunnel	BS-001-P	2411530069	24KMH357	24KMH356	156	28	Brick	101		6.60	7.00	46 Highest Risk	1,	8.90	//30/2013
Charlestown	Charlestown Brench Sewer	BC-004-P	2811530345	28KMH21	28KMH22	157	24	Brick	185		7.08	6.40	45 Highest Risk	6.	8.80	1/1/2012

Risk-based Prioritization – Capital Improvement Projects

Review the risk profile to understand the risk factors

Pipe Risk Profile

Pipe: 11MMH12 - 11MMH11

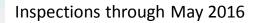
	12 11MMH11 Width (in) Slope	Sanitary 0 0.00	Material	U Vi	South Dorcheste	r Columbus Park Connection Length (ft)	317.64	BD-009, N P	1B-001-
Age (yr) 109	CONTRACTOR OF CONTRACTOR	-		Vi	trified Clay	Length (ft)	317.64		
a 1.9	Slope	0.00					317.64		
Diek Analysia		0.00 Depth (ft)		7.	76 Freeboard (ft)	1			
Risk Analysis									
Consequence of Failure	Result	Value	Weight	Score	Likelihood of Failure	Result	Value	Weight	Score
Financial Impact	Residential, 15 in	5.00	15.00%	0.75	Physical Condition	SCREAM Structural Score: 99	9.90	50.00%	4.95
Public Health And Regulatory Impacts	Residential, 15 in.	5.00	30.00%	1.5	Maintenance History	SCREAM Maintenance Score:	10.00	30.00%	3
Loss of Service: Critical and Hig Volume Customer Service Impact	 No critical and no high-volume customers impacted 	1.00	25.00%	0.25	Wet Weather Flow Based on 10 Year Storm Freeboard	100 Freeboard is > 0 ft and <= 8 ft or pipe	7.00	7.50%	0.525
Public Image Impacts; Disruptio to Public	Railroad or MBTA Station, 15 in	10.00	20.00%	2		burial depth is > 4 ft and < 8 ft	100		1.1
Environmental Impact	<=100 ft	10.00	10.00%	1	Likelihood of Sedimentation Buildup	SCREAM Code: PSag1	4.00	7.50%	0.3
					Corrosive Environment	Non Corrosive or Lowest Relative Corrosivity	1.00	5.00%	0.05

Risk-based Prioritization – Capital Improvement Projects

Review CCTV inspection to determine if pipe should be included in CIP

SCREAM CCTV Inspection

Pipe: 11MMH12 - 11MMH11


Neighborhood	Tributary	Area U	SMH	DS MI	H Feat	ure ID	Street	C.	Diam (in)	Width (ir	n) Material	Length (ft)*
South Dorchester	BD-009, N -P	1B-001 1	1MMH12	11MM	H11 111:	3530044	76 TAYLOF	R ST 1	15	0	Concrete	317.6
Reviewer	Greg De	Luca	City			YLOR S	RST Down Rim to		6		CREAM Struct	99
Date	06/21/13	3	Location Details				Flow Cont	Flow Control			CREAM Maint	100
Pre Cleaned	Heavy C	leaning	Up Rim t	im to Invert		16.36 Shape					CREAM II Score	0
CCTV Length*	292.2	1	Up Grade	Grade to Invert			Lining Me	Lining Method			CREAM Total	100
Sewer Type	Sanitary		Up Rim t	o Grade			Purpose	Purpose		ment		
Comments	- Merge Inspectio	d ons Num	Down Rim to Invert		16.54		Contract I	No	11-206-	004		
Last Review ID	27		Down Grade to Invert		ort		Video Lini	ĸ	Link to	Video		
Defects cb	served	(Raw	Data)									
Photo	Dirctn	Start Ftg	End Ftg	SCREAM Code	Defect Fa	mily Co	mponent	Туре		Severity	Comment	
	upstream	0.0		START AGAINST FLOW	Information	Pip	e	Start Ins	pection	Location		
	downstre am	0.0		START WITH FLOW	Information	Pip	e	Start Ins	pection	Location		
	upstream	0.0	16.8	PDSet30	Debris	Pip	e	Debris S	ettled	30% Area L	oss	


Achieving Long Term Goals

- Measuring the degradation rate of assets.
- Measuring the effectiveness of maintenance strategies.
- More accurately predicting the remaining life of its assets and plan for their replacement.
- Avoiding interruption of service caused by asset failures.
- Focusing on proactive management of its assets rather than reactive activities.
- Maintaining desired levels of service at the lowest life cycle costs with acceptable levels of risk.
- Reducing the overall risk of the sanitary sewer and storm drain system.

Inspections summarized by tributary area

- 183 miles
- 98% of the inspections linked to the correct pipe in GIS

coat (11 Aliptat

Questions?

References

- Association of Metropolitan Water Agencies. (2007). Implementing Asset Management—A Practical Guide. Published jointly with the National Association of Clean Water Agencies, and Water Environment Federation.
- Environmental Protection Agency's (EPA) April 2010 publication titled, Innovative Internal Camera Inspection and Data Management for Effective Condition Assessment of Collection Systems.
- IIMM. (2001). International Infrastructure Management Manual. Institute for Public Works Engineering, Australia.
- IIMM. (2006). International Infrastructure Management Manual. Institute for Public works Engineering, Australia.
- Loechle, J. M. (2009). Louisville MSD Integrates Sewer Pipe Probability of Failure and Consequence of Failure to Guide Their Continuing Sewer System Assessment Program. WEF Collection Systems Specialty Conference. Louisville.
- National Association of Clean Water Agencies (NACWA). (2002). Managing Public Infrastructure Assets to Minimize Costs and Maximize Performance—The Asset Management Handbook. Published jointly with the Association of Metropolitan Water Agencies, American Water Works Association, and Water Environment Federation.
- NASSCO. (2004). National Association for Sewer Service Companies (http://www.nassco.org).
- National Research Council, C-NRC. (2006). Municipal Infrastructure Investment Planning Report.
- TTM. (2004). Sewer Pipe Usage Survey. Trenchless Technology Magazine.
- WRC. (1994). Manual of Sewer Defect Classification. Water Research Center, UK.