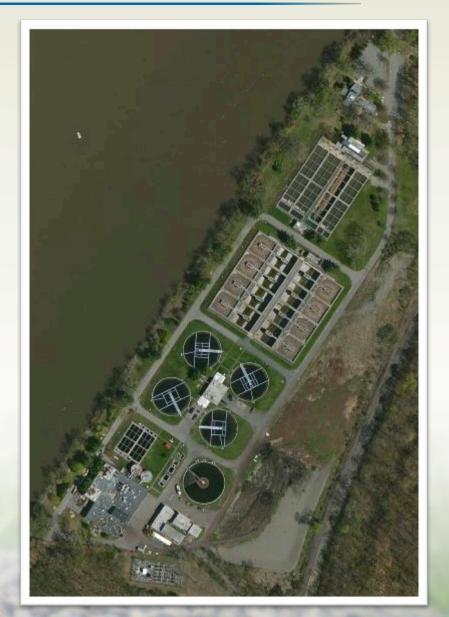
Developing a Beneficial Reuse Market for Class A Biosolids

A Case Study in the Challenges & Success with the Start up of the RCSD's New Biosolids Facility

NEWEA/NYWEA Spring Conference June 7, 2016



Agenda

- RCSD WWTF Background
- Overview of Biosolids Alternatives Evaluation
- New Biosolids Facility
- Operational Challenges
- Marketing Study and RFP
- Product Quality
- Developing a Beneficial Reuse Market
- Operating a Beneficial Reuse Program
- Lessons Learned
- Questions

RCSD WWTF Background

- Rensselaer County Sewer District No. 1
 - Serves Troy, Rensselaer & surrounding communities
 - Operation began in 1976
 - ADF 24 mgd/Peak 63 mgd
 - Activated sludge process
 - Headworks
 - PST
 - Mechanical Aeration
 - Final Clarifiers
 - UV Disinfection

RCSD WWTF Background

Zimpro wet oxidation process w/ onsite monofill

- Generated Class B biosolids at ~50%
- Energy hog (~\$450k annually)
- Equipment nearing end of useful design life
- Odors & Sidestream process impacts were issues
- Monofill nearing capacity

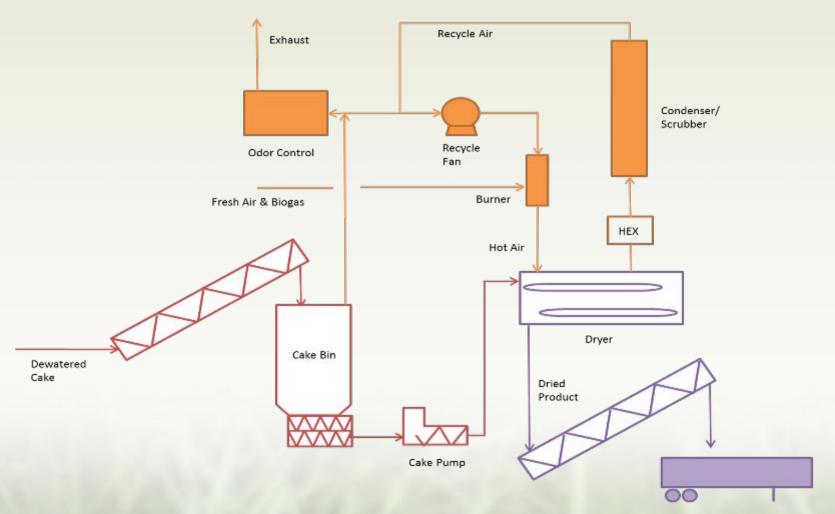
Biosolids Evaluation

Biosolids evaluation was part of Energy Service Contract

- New Zimpro
- Lime Stabilization & landfilling
- Pump liquid biosolids to ACSD North for disposal
- Anaerobic digestion & dewatering
 - Heat Drying Class A vs. landfilling Class B

Digestion, dewatering and drying selected

Biosolids Facility


Phase 1

- Convert 2 Existing Oxidized Tanks into Blended Sludge Holding Tanks
- Convert 3 Existing Sludge Holding Tanks to Anaerobic Digesters
- Biogas Storage
- 2 New 2- meter 3 BDP BFPs

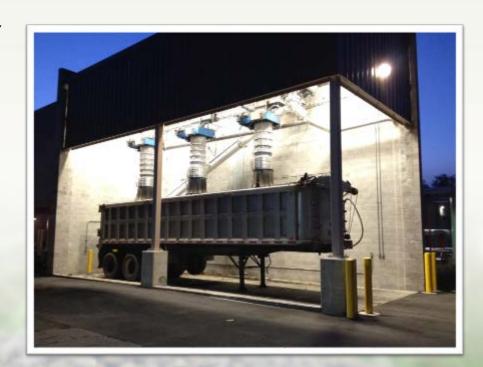
■ Phase 2

- Additional Anaerobic Digester
- Belt Dryer
- Dried Product Storage Facility (90 days of storage)

Biosolids Facility – Dryer System

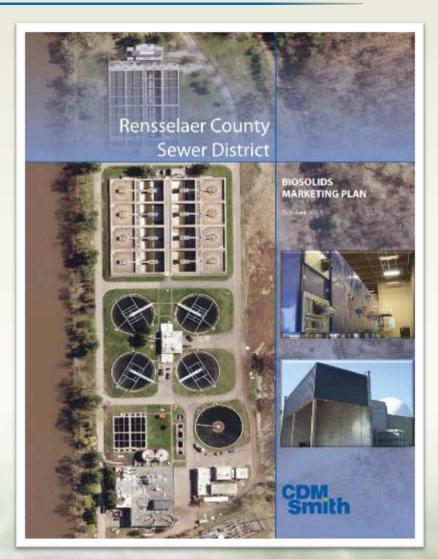
Hauled off site for Beneficial Reuse

Biosolids Facility - Dryer System



Biosolids Facility

- Dryer System Design Criteria
 - 3,300 lb water/hr Evaporation Capacity
 - 82 wT/week @ 24 hr/day, 6 days/week operation
 - 23 percent cake
 - 1,140 lbs of dried product at maximum capacity
 - 90+ percent dried product
 - 1,450 BTU/lb water
 - Meet NYS DEC 360 permit requirements


Operational Challenges

- Dewatered Cake Solids
- Debris
- Equipment Reliability
- Dried Product Characteristics
 - Design Value: 1,080 lbs/CY
 - Actual value: 525 lbs/CY

Marketing Study and RFP

- Analyzed cake samples
- Facilitated Ag.Gatekeepers Workshop
- Conducted Broker/ Commercial User Interviews
- Estimated Potential Product Demand

Marketing Study and RFP

- Proceeded with Broker/Commercial User
- RFP was issued in Spring of 2014 & selected in Summer of 2014
 - Resource Management, Inc. specializes in biosolids recycling
 - Revenue sharing component
 - Minimum guaranteed
 - Maximum of 50% revenue when certain price achieved
 - Contract includes costs for 3 different trailer loading options
 - Provides back-up for Class B

Product Quality

- Dried Product Characteristics
 - Nutrient Characteristics
 - TKN is ~3.9% Year 1 = 27 pounds nitrogen/ton

Dried Product Uses

- Fertilizer for agricultural use
- Disturbed soil reclamation
- Amendment for soil blends

Initial Benefits

- Slow release fertilizer protects groundwater
- Able to be stored outdoors uncovered
- Soil tilth increased organic matter
- No odors during storage or spreading

Product Quality

Metals	2015 Average RCSD (mg/kg)	NY Pollutant Limits (Monthly Average Concentration mg/kg)	Federal 40 CFR Part 503	Rite Aid Central Vite™
Arsenic	10.03	41	41	
Cadmium	4.56	21	39	
Chromium	31.6	1000	1200	83
Copper	522	1500	1500	1276
Lead	85.3	300	300	
Mercury	1.12	10	17	
Molybdenum	7.68	40	18	102
Nickel	24.6	200	420	3.2
Selenium	7.45	100	36	12.8
Zinc	889	2500	2800	9573

Developing a Market

- Application Rates
 - 5.6 tons/acre = 20.4 cubic yards/acre 150 lbs N/acre plant available 1st year
- Current Product Value
 - Market Value \$3.50/ton + Cost of Trucking
 - Fertilizer Value \$53.44/ton + Cost of Trucking

Operating a Beneficial Reuse Program

- Overcoming ProductDensity Challenge
 - Direct Loading limited
 capacity due to size of bay
 - Storage Building for live loading
 - Loading Trailers needed to build a ramp
 - Went from 8 tons per load to 28 tons per load

Operating a Beneficial Reuse Program

- Farmer interest growing
- Have not had product available consistently due to dryer being down
- Meeting crop needs requires more labor than commercial fertilizer
- Value is in slow release N and improving soil tilth
- Market is new but promising

Operating a Beneficial Reuse Program

- Revenue Sharing Model
 - Demonstrate different cropping systems to drive demand/price
 - Increase revenue share incrementally to a maximum of 50% of market price

Path Forward

 Goal to achieve standard price greater than \$26.00 per ton within the next 3 to 5 years

Lessons Learned

- Transform attitude from "waste" to "product".
- Quality Class A product has value in the market
- Flexible and creative solutions necessary
- Market expects consistent products and service
- Partnership is essential

Questions?

Gerry Moscinski, P.E. RCSD gmoscinski@rensco.com

Brian Hilts, P.E. CDM Smith hiltsba@cdmsmith.com

Shelagh Connelly RMI

shelagh.Connelly@rmirecycles.com