Overview of Nitrogen Removal and the IFAS Process for the Narragansett Bay Commission

Kleinfelder Cambridge, MA

Background

- Discharge of nitrogen to Narragansett Bay contributes to:
 - ${\ensuremath{\mathbb C}}$ Algae blooms and reduced dissolved oxygen
 - \bigcirc Impaired fish habitats
- Fields Point WWTF has 5 mg/L permit limit for Total Nitrogen (TN).
 - Took effect May 1, 2014.
 - \bigcirc TN Permit is seasonal for May 1 through Oct 31.
- The Integrated Fixed Film Activated Sludge (IFAS) process designed and built to meet TN permit limit.

Theory of Biological Nitrogen Removal

Biological Nitrogen Removal

○ Two step process:

- Step 1 Nitrification Ammonia present in wastewater is converted to nitrate (and a little nitrite).
- Step 2 Denitrification Nitrate and Nitrite are converted to nitrogen gas and leaves wastewater to the atmosphere.

Nitrification

- First step in biological nitrogen removal process.
- \bigcirc NH₄⁺ + 2O₂ $\xrightarrow{\text{nitrifiers}}$ NO₃⁻¹ (nitrate) + 2H⁺ + H₂O
- ⊂ Aerobic process, requires air.
 - DO > 2 to 3 mg/L

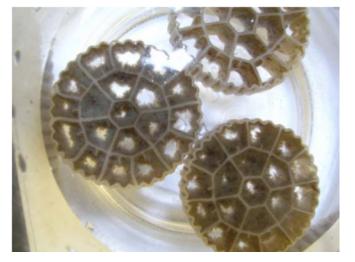
Nitrification

- Requires longer sludge age to maintain nitrifiers.
- Generates hydrogen ions / consumes alkalinity
- Temperature dependent: works faster in warmer water.

- Second step in the biological nitrogen removal process.
- \bigcirc Carbon + 2NO₃⁻¹ $\xrightarrow{Facultative}$ N₂ (nitrogen gas) + 2CO₂ + 2OH⁻ bacteria
- ⊂ Anoxic process, takes place without air.
 - DO < 0.3 mg/L
 - Nitrate used as energy source (electron acceptor) instead of oxygen.

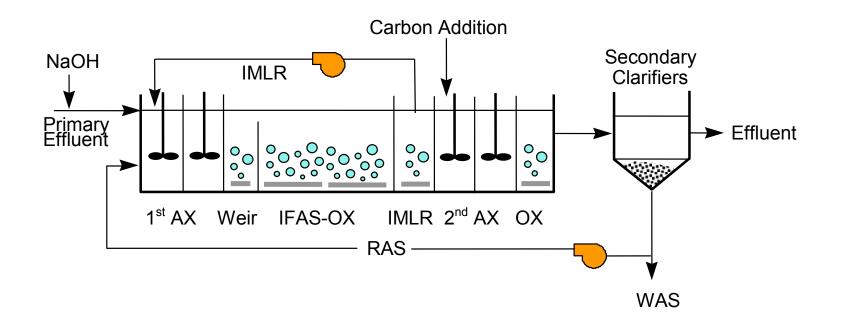
Denitrification

- Requires carbon source (BOD) for reaction.
- Generates hydroxide ions / recovers alkalinity.
- Process slows down when nitrate concentrations low.

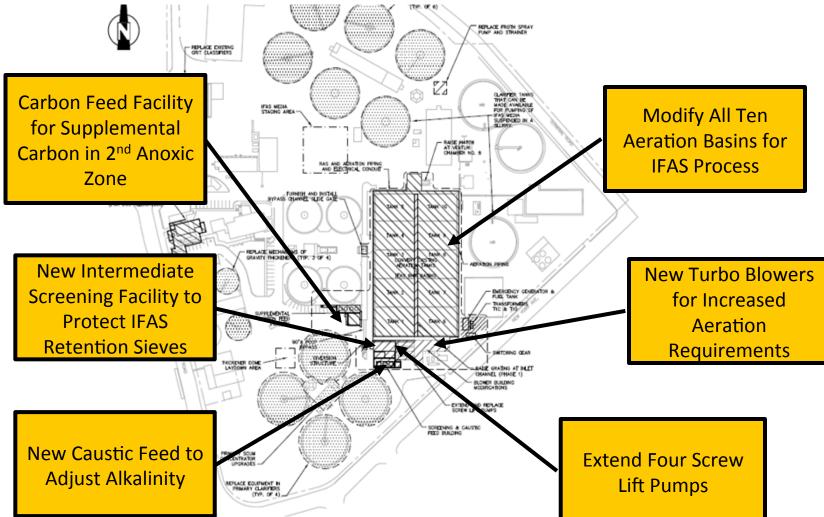

Total Nitrogen Removal in the IFAS Process (IFAS = Integrated Fixed Film Activated Sludge)

IFAS Process

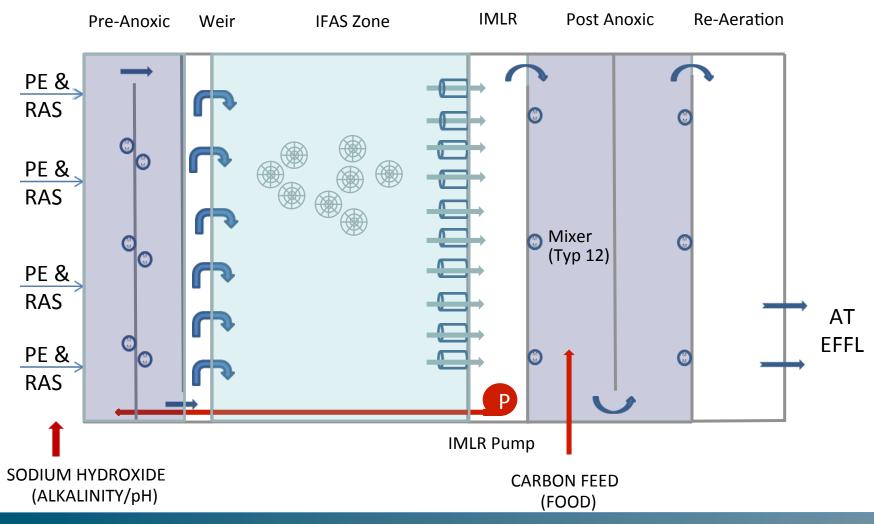
 IFAS process selected in Preliminary Design.



- $\mathbb C$ Allowed for reuse of existing ATs.
- $\, \subset \,$ Process entails adding high surface area media to AT.
 - $\ensuremath{\mathbb{C}}$ Solids grow on media to increase MLSS.
- Fixed growth:
 - $\ensuremath{\mathbb{C}}$ Increases capacity in aeration zone.
 - \bigcirc Increases sludge age.
 - \bigcirc Promotes nitrification.



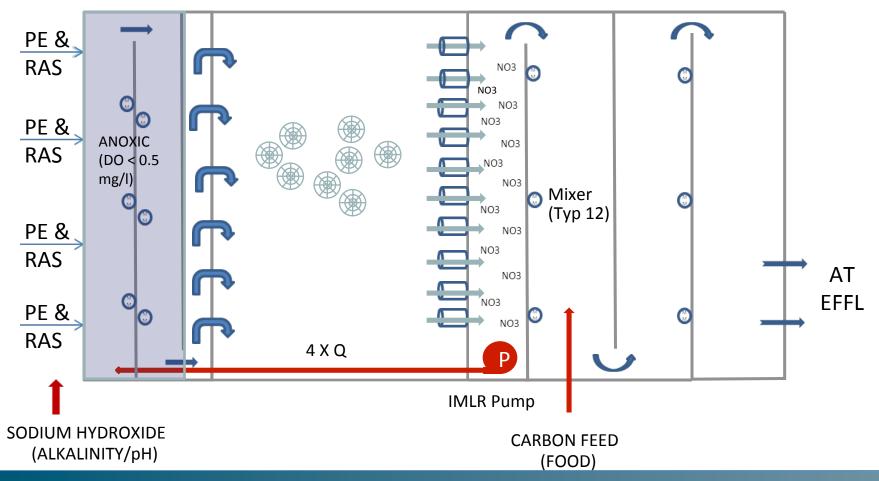
IFAS Process Schematic



KLEINFELDER Bright People. Right Solutions.

IFAS System

Bright People. Right Solutions IFAS (AS) ZONE – Contains IFAS Media (Aerobic) Location for Nitrification Screens to keep media in IFAS zone but allow MLSS to next zone (conversion of ammonia to nitrate) PE & Aerobic (DO > 3.0 mg/l)RAS $NH_3 + O_2 + nitrosomonas/$ nitrobacter PE & →NO₃ RAS works best when alkalinity ~ 150 mg/l Mixer (Typ 12) and pH > 7.0 PE & RAS AT EFFL PE & RAS D **IMLR** Pump SODIUM HYDROXIDE **CARBON FEED** (ALKALINITY/pH) (FOOD)

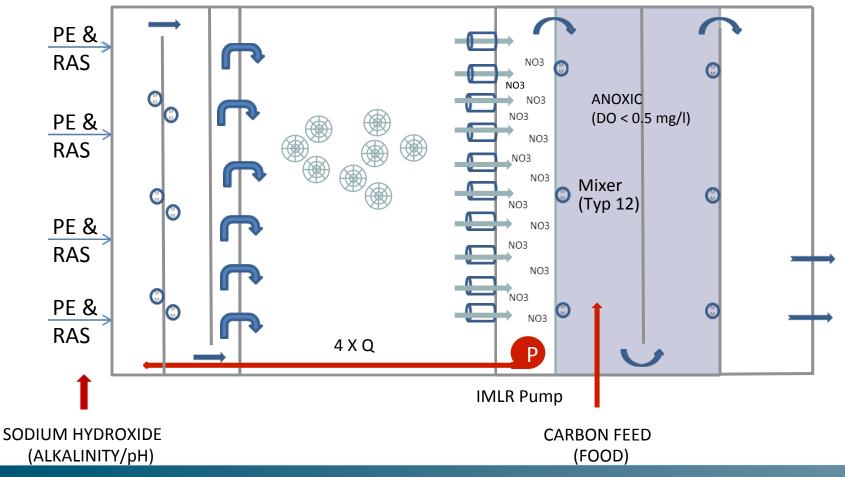

KLEINFELDER

FIRST (Pre) ANOXIC ZONE - DO < 0.5 mg/l

Location for Initial Denitrification (conversion of nitrate to nitrogen gas)

KLEINFELDER Bright People. Right Solutions.

> NO3 + PE (food) + RAS (bugs) = N(gas) + BOD removal (Total Nitrogen to 8-9 mg/l) Mixers but slow enough not to generate O_2 Internal recycle of NO₃ enriched ML from IFAS zone


KLEINFELDER

SECOND (Post) ANOXIC ZONE - DO < 0.5 mg/l

Location for Final Denitrification (conversion of nitrate to nitrogen gas)

KLEINFELDER Bright People. Right <u>Solutions.</u>

> In second anoxic zone there will still be some NO₃ enriched MLSS, but no food: NO₃ + food (carbon source) + bugs = N₂ (gas) \bigstar

Process Equipment

Anoxic Mixers

- Each Aeration Basin has 12 Submersible Mixers.
- Mixers keep solids suspended in Anoxic Zones.
- Mixers operate 24 hrs/day
- HOA switch at each mixer and on Kruger PLC.
 - In Auto, mixers will automatically operate via Kruger PLC.
 - ${\ensuremath{\mathbb C}}$ Hand mode provided for testing only.

IMLR Pump

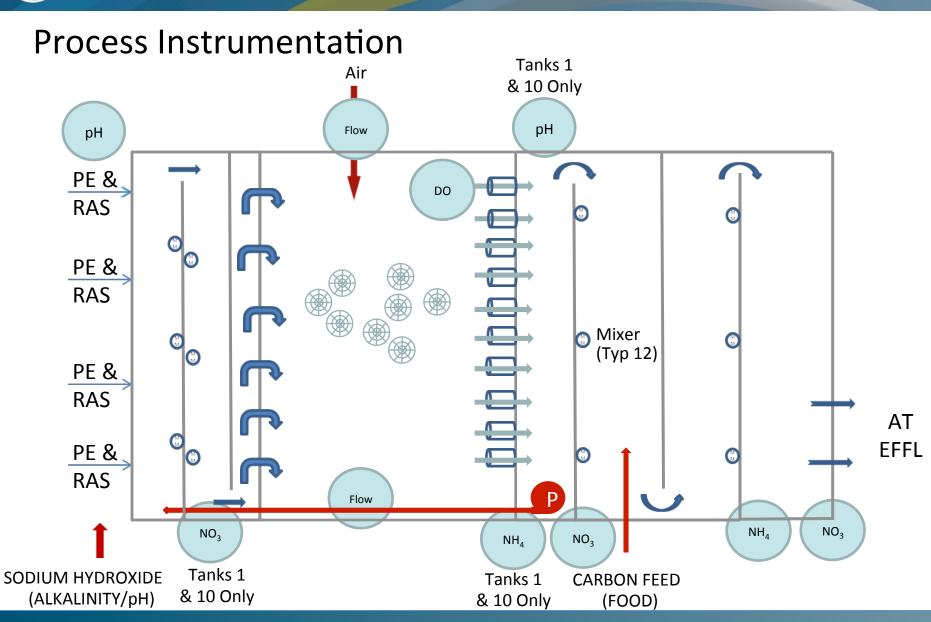
- $\odot\,$ Each Aeration Basin has 1 IMLR Pump.
 - \bigcirc IMLR = Internal Mixed Liquor Recycle
- \bigcirc Recycle nitrates from Pump zone to Pre-Anoxic Zone. \bigcirc Flow = 3 to 4 X Q, VFD Controlled
- Pumps operate 24 hrs/day.
- HOA switch at pump and on Kruger PLC.
 - \bigcirc In Auto, pumps will automatically operate via Kruger PLC:
 - $\mathbb C$ Flow Pace, Flow pace w/ nitrate trim, Constant flow rate
 - ${\mathbb C}$ Flow meter to verify flow and for control feedback.
 - $\ensuremath{\mathbb{C}}$ Hand mode provided for testing only.

IFAS Media

- \bigcirc Each IFAS Zone filled with Media. \bigcirc 52% Media Fill
- Media retained by Sieves.
- Screens are installed at tank drains and scum outlets in concrete divider walls.

Aeration

- Coarse Bubble Diffusers at bottom of IFAS Zones.
- Aeration to IFAS Zones
 controlled to maintain target DO.



- Each IFAS Zone has DO Probe, air flow meter, and control valve.
- $\, \subset \,$ Other aerated zones manually adjusted
 - Weir zone, Pump Zone, + Re-aeration Zone

Return Activated Sludge

- New RAS Pipe provided to AT Influent Channel.
 - \bigcirc Better RAS distribution from clarifiers.
 - \bigcirc Reduce DO in Pre-Anoxic Zone.
- New RAS Pipe has a flow meter and control valve.
- Existing RAS control valves and flow meters not modified.

KLEINFELDER

KLEINFELDER Bright People. Right Solutions.

Operations and Control

IFAS Process Control – NaOH Feed

- Caustic feed controlled pH > 7.0 in IMLR Pump Zone.
- pH Meter in IMLR Pump Zone (Tanks 1 and 10 only) used to verify mixed liquor pH after nitrification.
- Caustic feed pumps are flow paced.
 - $\mathbb C$ Controls trim with AT Influent Channel pH meter.
 - Adjust metering pump stroke and control set point to get target IMLR Pump Zone pH.

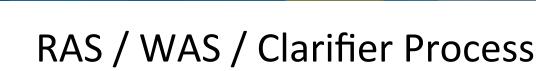
IFAS Process Control – Aeration

- $\, \subset \,$ Air Flow to IFAS Zone controlled to get target DO.
 - ${\Bbb C}$ IFAS Zone DO will vary from 3 to 6 mg/L as needed to fully nitrify.
 - Ammonia meter in Re-aeration Zone and in IMLR Pump Zone (Tanks 1 and 10 only) monitors nitrification.
 - \bigcirc Target ammonia for full nitrification = Less than 1 mg/L as NH₄-N.
- Adjust DO setpoint seasonally as needed to fully nitrify.

IFAS Process Control – Aeration (cont.)

- Air to IFAS Zone controlled to maintain DO setpoint.
 - DO Meter, flow meter, and control valve provided at IFAS Zone for aeration control.
- Minimum aeration required for mixing and to keep media from accumulating at sieves.

 $\mathbb C$ Controls do not go below the minimum aeration set point.


IFAS Process Control – IMLR Pump & VFD

- IMLR Flow Rate controlled to get target nitrate in IMLR Pump Zone.
 - \bigcirc IMLR Pump Zone nitrate range = 1 to 2 mg/L as NO₃-N.
- IMLR Flow Rate varied with Kruger PLC.
 - Three control loops to select from: Flow Pace, Flow pace w/ nitrate trim, Constant Flow Rate.
 - Nitrate in Pre-Anoxic Zone (Tanks 1 and 10 only) used w/ nitrate trim.
- IMLR Flow meter used for control feedback.

IFAS Process Control – Carbon Feed

- Carbon feed adjusted to minimize effluent nitrate.
- Carbon feed rate varied with Kruger PLC.
 - Three control loops to select from: Nitrate Load, Nitrate Reference Table, Constant Feed.
 - Nitrate meters in IMLR Pump Zone and Re-aeration Zone used w/ nitrate load mode.
- Adjust metering pump stroke and control loops to minimize Re-aeration zone nitrate.

- $\, \odot \,$ Set RAS and WAS Rates as needed to maintain MLSS.
 - \bigcirc Design MLSS of 2,750 mg/L.
 - ${\mathbb C}$ This MLSS does not include the fixed growth.
- Kruger's suggested clarifier loading rates:
 - \bigcirc Hydraulic = 400 to 630 gpm/ft²
 - \bigcirc Solids = 14 to 22 lbs/ft²/day
- Monitor clarifier blanket depths and settling / SVI.
 - \bigcirc IFAS not expected to significantly change SVI.

Process Monitoring

Parameter	Frequency	Method
AT Influent pH	1 / per shift	On Line Instr.
IFAS Zone DO	1 / per shift	On Line Instr.
IMLR Zone Nitrate	1 / per shift	On Line Instr.
AT Eff. NH_3 and NO_3	1 / per shift	On Line Instr.
Air Flow Rate	1 / per shift	Flow Meter
IMLR Flow Rate	1 / per shift	Flow Meter
RAS Flow Rate	1 / per shift	Flow Meter / DCS
WAS Flow Rate	1 / per shift	Flow Meter / DCS
Clarifier Blanket Depth	1 / per shift	Blanket Meter / DCS
Caustic Feed Rate	1 / per shift	Chemical Use
Carbon Feed Rate	1 / per shift	Chemical Use

Sampling and Analysis for Process Control

Parameter	Frequency	Method
AT Inf. TSS	1 / per day	Lab Test
MLSS TSS and VSS	1 / per day	Lab Test
Attached Growth on Media	1 / per week	Lab Test
AT Inf. and Eff. BOD	1 / per day	Lab Test
AT Inf. and Eff. COD	1 / per week	Lab Test
AT Inf. and Eff. TKN / NH_3 / NO_3	1 / per day	Lab Test
AT Inf., Eff., & Pump Zone Alk. & pH	1 / per day	Lab Test
IFAS Zone Dissolved Oxygen	1 / per day	Portable Probe
IFAS Zone Temperature	1 / per day	Thermometer

- No significant change in effluent BOD or TSS.
- No significant change in MLSS expected.

 \bigcirc Design MLSS = 2,750 mg/L.

○ No significant change in SVI expected.

○ Slight improvement in settling seen at other IFAS plants.

- Decreased chlorine use in Chlorine Contact
 - $\mathbb C$ Less chlorine is required for disinfection.
 - $\ensuremath{\mathbb{C}}$ Reduced nitrate and ammonia in effluent to oxidize.

Kruger IFAS Design Capacities

Design Capacities & Variables

- Internal Recycle
- RAS
- WAS (max conditions)
- MLSS =
- Solids Retention Time
 - 1. Anoxic SRT
 - Aerobic SRT
- Clarifier Rates
 - 1. Overflow Rate
 - 2. Solids Loading Rate

- = 230 MGD
- = 65 MGD
- = 42,000 lbs/day 2750 mg/L
- = 5.08 days
- = 2.44 days
- = 2.64 days
- = 400 630 gallons/ft2/day
- = 14 22 lbs/ft2/day

Kruger IFAS Operating Parameters

Permit season	– May 1	- October 31
---------------	---------	--------------

Variable	Setpoint/Target	Description
HYBAS DO (IFAS)	3 – 6 mg/L	as required to establish full nitrification (<1 mg/L NH4-N) out of pump zone
IMLR	<mark>5.0</mark> – 23.0 MGD	as required to maintain NOX-N in the pre-HYBAS zone between 1 – 2 mg/L
MLSS/WAS	2750 mg/L	
RAS	1.0 - 6.5 MGD	
C/N ratio	4.6 or as required	May vary depending on actual field conditions

Questions?

