

Phosphorus-Recovery from Waste Activated Sludge (WAS) in Enhanced Biological Phosphorus removal (EBPR) Processes

Yuqi Wang, Yueyun Li,, April Z. Gu and Annalisa Onnis-Hayden

Phosphorus –- Not Reusable Resource

Pollution

Decreasing Stock

□ Increasing Requirement

Objectives

www.lincoln.ne.gov/city/pworks/watrshed/educate/fertiliz/

Results

Approaches

P-Recovery Potential from wastewater

Background Objectives Approaches Results Conclusions 4

Objectives

Objectives

Evaluate the operation conditions impacts on P-release

Approaches

- Lab scale SBRs
- 24hrs endogenous digestion tests

Investigate the mechanisms of P-release in the Bio-P anaerobic digestion during 0-24 hrs

Explore the effect of anaerobic digestion process on the PAOs

Live/Dead

 Phosphate and metal ion concentration

• FISH

 P-release tests with VFA addition

Conclusions

Background Objectives

Approaches

Results

7

Methods: SBRs operation

• HRT: 12 hours

Background

- Temperature: 20 °C
- DO: < 0.1 mg/L (AN)
 > 4 mg/L (AE)
- Weekly monitoring of TSS/VSS, effluent phosphate concentration.

Objectives

Approaches

Methods: P: release activity

Results

Methods: Microbial analysis

How does COD/P effect the P-Recovery Potential?

What's the Mechanisms of P release under AN Condition?

Approaches

Results

Time (hours)

Objectives

Background

Conclusions

Background Objectives Approaches Results Conclusions 14

How Microorganism Population Change?

PAOs Abundance

How Microorganism Population Change?

PAOs Activities

Conclusions

Background

- □ Lower influent COD/P ratio perform better in terms of quantity and rate of P release under anaerobic conditions -- might be preferable when operating P-recovery scheme
- SRT in the range between 10-20 days showed also the highest P released, in terms of both quantity and rate -- lower footprint for the P release tank
- □ The majority of released P was due to poly-P depletion at all SRTs condition
- Different mechanisms are responsible at different time intervals

Approaches

□ PAO activity was reduced after the digestion test

Objectives

Conclusions

Results

Acknowledge

Northeastern University

Professors: Annalisa Onnis-Hayden April Gu Philip Larese-Casanova

PhD students: Yueyun Li Nick Tooker

Thank you! Questions?

Contact info: Yuqi Wang MS. |EIT. Department of Civil and Environ. Engineering Northeastern University Email: wang.yuq@husky.neu.edu

