Challenges in Selecting New Biosolids Treatment and Disposal Equipment for the Mattabassett WPCF

Presented by: Prashanth Emmanuel, Wright-Pierce

The Mattabassett District

- Regional WPCF
 - Serves 4 member communities:
 - 1. New Britain,
 - 2. Berlin,
 - 3. Middletown,
 - 4. Cromwell &
 - Portions of Farmington, Rocky Hill & Newington, CT
- Initial Operation 1965
- Secondary Treatment Upgrade 1989
- Nutrient Removal & Capacity Expansion 2015 Annual Average Flow – 35 MGD Maximum Monthly Flow – 55 MGD CEPT – 55 – 110 MGD

Overview of the Treatment Plant

Fall 2015

Equipment Conditions Prior to Upgrade

- Multiple Hearth Incinerator Installed in 1960's
- Fluidized Bed Incinerator Installed in 1980's
- Belt Filter Presses/ Sludge Pumps Installed in 1980's
- Polymer System Installed in 1980's

Goals Sludge Dewatering Upgrade

- Incinerating onsite vs disposing sludge offsite
- Autogenous Incinerator Operation
 - Minimize supplementary fuel required
 - 24% to 28% cake dryness
- Ability to handle varying sludge conditions

Sludge Process

Recommendations Facilities Plan 2004

- Dewatering Alternatives Recommended
 - 1. Belt Filter Press Dewatering
 - 2. Centrifuge Dewatering
 - 3. Rotary Press Dewatering

Alternative 1 Belt Filter Press

- Replace with three new 1.5 M belt filter presses (2 duty, 1 backup)
- BFP capacity was calculated at an average influent feed loading concentration of 2.8%
- If co-thickening is eliminated thickening of the WAS will be needed using a gravity belt thickener

Alternative 1 Belt Filter Press

- Advantages
 - Equipment can be started and shut down quickly
 - Less noise associated to other equipment
 - Most maintenance work can be done by plant staff except for belt replacement
- Disadvantages
 - Odors not easily contained
 - Requires high pressure/volume wash water for cleaning
 - Greasy sludge can blind belts
 - Requires more cleanup and can be time consuming

Alternative 2 Centrifuges

- Replace with 3 new centrifuges (2 duty and 1 back up)
- Centrifuge can handle influent loading concentration of 2.3%
- If co-thickening is eliminated, thickening of the WAS will be needed using a gravity belt thickener

Centrifuge

Alternative 2 Centrifuges

- Advantages
 - Ability to control cake dryness
 - High throughput in small footprint
 - Fully enclosed for minimal odors
 - Minimal wash water requirements
- Disadvantages
 - Highest energy requirements
 - High operating noise level
 - Maintenance requirements higher than other technologies

Alternative 3 Rotary Press

- Replace with 3, six channel rotary drum press
- Sizing is a function of solids loading rate and not hydraulic loading rate
- If co-thickening is eliminated, thickening of the WAS will not be needed using a gravity belt thickener

Rotary Press

SCREEN — CAKE FORMATION INTERIOR OF — CHANNEL OUTLET FOR — FILTRATE

Alternative 3 Rotary Press

- Advantages
 - Compact
 - Moderate capital costs
 - Relatively enclosed for odor control
 - Can be automated for minimal operational needs
- Disadvantages (2004 Facilities Plan)
 - Limited operating history
 - Only one manufacturer, making equipment proprietary

2004 Pilot Test Rotary Press

THE MATTABASSETT DISTRICT Plant location: Cromwell, CT CAKE DRYNESS VS THROUGHPUT (MIXED SLUDGE)

April 26 to 29, 2004

2008 Pilot Results Rotary Press

Production vs Dryness (separated by day)

2009 Pilot Test Centrifuges

Model CS18-4 Skid Mounted System

2009 Pilot Test Centrifuges

FLOW RATES, Gpm	CAKE SOLIDS, % w/w ts	POLYMER DOSAGE, #/ton db (active)	Recovery, % w/w ss.
72	26.9 - 31.9	14.6 – 17.7 [Poly B]	83.7 - 94.3
75	23.7 - 29.2	10.6 – 12.7 [Poly A]	95.4 - 96.7

- Polymer A Mannich Polymer
- Polymer B Emulsion Polymer

2009 Pilot Test Centrifuge Results - Polymer

Summary

- District further evaluated Visited several installation locations
- Centrifuge Chosen
 3 Units 0.75 tons/hr. per unit each
- Enclosed Better Odor Control
- Ability to handle a variety of sludge characteristics

Centrifuges: Westfalia \$ 1,060,000

General Contractor: CH Nickerson

Current Operating Results - Westfalia

Incinerator Feed Pump: Putzmeister Twin-Cylinder Reciprocating Piston Pump \$640,000

Stored Sludge Pump: Carter Triplex Plunger Pumps \$200,000

Mattabassett, CT WPCF Fluidized Bed Incinerator (Manufacturer -Preselected) \$ 21,000,000

Infilco Degremont Inc.

Questions

