An Attempt to Sustainably Stabilize EBPR Performance at Meriden, CT with Side-Stream EBPR

- Nick Tooker¹, Paul Dombrowski², Frank Russo³, Annalisa Onnis-Hayden¹, April Z. Gu¹
- 1 Northeastern University CEE Dept.; 2 Woodard & Curran; 3 City of Meriden, CT
- NEWEA Session 1, Innovative Treatment Technologies January 25, 2016

(@nbtooker)

nbtooker@gmail.com

Acknowledgements

- Funding provided by WERF, HRSD, W&C
- City of Meriden staff
- Clean Water Services Durham Facility
- Undergraduate research assistants

Motivation for Improving EBPR

- EBPR operation is notoriously "unstable"
 - Sometimes due to lack of carbon
- Meriden staff are frustrated because this is the only part of plant they can't control
 - And permit limits keep getting lower

Highly Variable Effluent OrthoP in Meriden

Typical EBPR Process Configuration

S²EBPR Process Configuration - Side-Stream RAS

Hypothesized Ways S²EBPR Improves Stability

- Is there VFA production in side-stream?
- Is there active VFA uptake in side-stream reactor*?
- Is there a shift in microbiological population?
 - To more efficient polyphosphate accumulating organisms (PAOs)?
 - With fewer glycogen accumulating organisms (GAOs)?

* - Bi et al, 2013 and Lopez et al, 2006

What We Currently Know About S²EBPR

- In operation at full-scale facilities
 - 50+ in Europe (mostly Denmark)
 - ~6 in North America
- No consensus on operation
 - Several different flow schemes
- Standard models (e.g., BioWin, GPS-X) don't fit observed data
- Fundamental understanding is lacking

Testing to Understand S²EBPR

- Simulated S²EBPR Batch Testing
 - Meriden, CT
 - Durham (Clean Water Services, Tigard, OR)
 - Westside Regional (West Kelowna, BC)
 - Cedar Creek (Olathe, KS)
- S²EBPR Pilot Testing

Meriden, CT

Simulated S²EBPR Batch Testing Reactors

Sludge from Meriden (aerobic MLSS) and Durham (TWAS)

Similar initial MLVSS of ~ 6,000 mg/L

3-day anaerobic incubation

Mixing once per day during sample collection

VFA Production in Simulated S²EBPR Batch Test

Residual VFA quadrupled and sCOD tripled after just one day

Low ORP in Simulated S²EBPR Batch Tests

Low ORP allows for fermentation and VFA production

Key Organisms in EBPR Processes

- Accumulibacter
 - Commonly known PAOs
 - Important for effective EBPR
- Tetrasphaera
 - Lesser known PAOs
 - Widely present in WRRFs (15%+ of population)
 - Some are also fermenters
- Competibacter
 - Commonly known GAOs
 - Competes with PAOs for VFA

Microbiological Population Shifts in S²EBPR Batch Test

Sample from Durham Facility (Tigard, OR) EUB mix (general probe) in green; *Accumulibacter* in yellow

Northeastern University

Sample from Durham Facility (Tigard, OR) EUB mix (general probe) in green; *Tetrasphaera* in red & orange

Meriden S²EBPR Pilot - Goals

- Effectively implement S²EBPR
 - Stabilize EBPR operation
 Deduce ferrie ableride use
 - Reduce ferric chloride use
- Improve understanding of process
- Minimize effort for plant staff

Meriden S²EBPR Pilot - Overview (Mar-Aug 2015)

• Aerobic MLSS was feed to side-stream reactor (unused clarifier)

Delayed VFA Production in Meriden S²EBPR Batch Test

Low ORP in Simulated S²EBPR Batch Tests

ORP not low long enough for residual VFA generation in first 2 days

In S²EBPR Pilot Reactor: Low DO, too High ORP

Northeastern University

Meriden's Fix: Increase PC Blanket Level for VFA

Notes from the Operators

- Be committed for significant additional sampling, analyses, and labor
- Communicate constantly with engineers and researchers
- Be willing to experiment
 - Use your expertise!

Takeaway Messages

- VFA production occurred in simulated S²EBPR batch reactors
 - But low ORP and adequate HRT required
- Aerobic MLSS is a poor feedstock for S²EBPR reactor
 - Getting ORP low enough is problematic
 - RAS, WAS, or anaerobic MLSS preferred
- Highly trained and engaged treatment plant staff is critical

Meriden S²EBPR Pilot - Next Steps

- Pilot test #2, March 2016
- Alternative operation with RAS or TWAS instead of aerobic MLSS
 - Reduce ORP in reactor
 - Increase VFA production

References

- Lopez, C.; Pons, M.N.; Morgenroth, E. (2006). Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal. *Water Research*, 40, 1519-1530.
- Bi, D.; Gou, X.; Chen, D. (2013). Phosphorus release mechanisms during digestion of EBRP sludge under anaerobic, anoxic and aerobic conditions. *Water Science & Technology*, 67(9), 1953-1959.

Discussion & Questions

Nick Tooker, P.E., Ph.D. Student (April Gu research group) Northeastern University Civil & Environmental Engineering nbtooker@gmail.com @nbtooker ()) April Z. Gu: april@coe.neu.edu

Frank Russo: frusso@meridenct.gov

Environmental Biotechnology Laboratory

