Mystic Completes Year One Operating the BioMag Process

Megan B. Moody, P.E.

Mystic WPCF Background

- Located in the coastal Town of Stonington, Connecticut
- Permitted capacity of 3.0 ML/d (0.80 mgd)
- Secondary treatment upgrade for nutrient removal (TN)
- Constrained site
- Minimal site modifications
- Existing Process:
 - Influent grinding
 - Primary clarifiers
 - Aeration basins (cyclic aeration)
 - Secondary clarifiers
 - Disinfection (NaOCI)
 - Solids diversion

Mystic WPCF Project Development

- 2007 Facilities Plan
 - Identified plant upgrade was required
 - Age and condition
 - Projected flow and load increase
 - Increased nitrogen removal
- 2009 Biological Process Evaluation
 - Evaluation of various treatment technologies
 - BioMag was identified to meet the project requirements
- 2010 Successful Full-Scale Demonstration
 - Effluent total nitrogen < 5 mg/L
- 2014 Permanent System Constructed

BioMag - Evoqua Water Technologies

Biological Design Criteria

Process		Conventional activated sludge in 4-stage Bardenpho	
Dro	coss Loads (20 day may)	configuration; can be operated as MLE	
Process Loads (30-day max.)			
-	BOD ₅	530 kg/day (1160 lbs/day)	
-	TSS	340 kg/day (740 lbs/day)	
-	TKN	90 kg/day (200 lbs/day)	
Design Parameters			
-	Design temp. (30-day min)	11 deg. C	
-	Aerobic SRT	9.9 days	
-	MLSS concentration	8,800 mg/L (biological mass only)	
_	Total Nitrogen	6.4 mg/L (2014), 5.2 mg/L (2030)	
Aeration basins			
-	Number	2	
-	Dimensions	6 m x 6.4 m x 4.04 m deep (52 ft x 21 ft x 13.25 deep)	
-	1 st -stage anoxic volume	0.180 ML (0.0475 million gallons)	
-	1 st -stage aerobic volume	0.416 ML (0.110 million gallons)	
-	2 nd -stage anoxic volume	0.180 ML (0.0475 million gallons)	
-	Reaeration volume	0.049 ML (0.013 million gallons)	
-	Total volume	0.825 ML (0.218 million gallons)	
Final Settling Tanks			
-	Number	2	
-	Dimensions	16 m x 4.0 m x 2.50 (52 ft x 13 ft x 8.2 ft deep)	
	Total clarifier surface area	124.6 m ² (1,352 ft ²)	

Process Tanks and BioMag Arrangement

MLSS Performance

SLR Performance

SVI Performance

Effluent Nitrogen Performance

Aeration Tank Foam

- Foam Mitigation Measures Design
 - Surface cut outs in baffle walls
 - Foam spray nozzles
 - Skimmer trough in effluent channel for surface wasting

Aeration Tank Foam

- Foam Mitigation Measures Field Implementation
 - Defoamer agent
 - Surface wasting wells in bioreactors
 - Process optimization

Magnetic Drum Biological Capture Efficiency

- 95% magnetite recovery
- 70% biological solids capture

- Unintended WAS to bioreactor
- Thinner WAS to sludge thickening

Solids Deposition

- RAS and WAS wet wells required mixing
- Recycle systems included in design
- Settling experienced after startup
- Creates unbalanced solids inventory
- Impacts sludge thickening
- Further mixing implemented in field

Clarification and Disinfection

- Final settling tank performance issues
 - Polymer dosage
 - Foam carryover
 - Solids carryover to disinfection
 - Below TSS permit concentration of 30 mg/L
 - Above typical TSS concentration of 10 mg/L
 - Poor UV disinfection performance
 - Enterococci limit of 35 MPN/100mL
 - Potential shading/shielding
 - Partical size distribution

Loge et al., 1996

March 2015 Secondary Effluent Analysis

TSS Particle Size Distribution

Collimated Beam Testing

Dose (mJ/cm²)	Log Inactivation	Enterococci (count/100ml)
0	0.000	904
10.14	0.850	128
20.27	1.394	37
30.41	1.696	18
40.54	1.628	21
50.68	1.698	18

Secondary Effluent Filtration Pilot

- Disk filter pilot to determine ability to meet disinfection permit requirement
- Filter secondary effluent to reduce TSS to less than 10 mg/L

Preliminary results indicate that UV disinfection was effective

on the filtered sample

Collimated Beam Testing

Filter Influent				
Dose (mJ/cm2)	Log inactivation	Enterococci (count/100mL)		
0	0	7088		
10	1.419	270		
20	1.492	228		
30	1.572	190		
40	1.653	204		
50	1.623	169		
Filter Effluent				
Dose (mJ/cm2)	Log inactivation	Enterococci (count/100mL)		
0	0	5930		
10	2.511	18		
20	3.773	0		
30	3.773	0		
40	3.773	0		
50	3.773	0		

Design and Operation Considerations

- Foam Mitigation Measures
 - Foam Spray
 - Defoamer Agent
 - Surface wasting directly from bioreactors
- Account for biological solids capture efficiency
- Track solids inventory
- Prevent solids deposition through process
- Continual process optimization
- Consider particle size distribution for UV disinfection of enterococci

Treatment Performance Summary

- UV disinfection has been problematic
- Particle size distribution and potential shielding may be contributors
- BioMag process successfully reduces total nitrogen
- Ballasted mixed liquor enhances settling and decreases SVI
- Facility operates at a high MLSS concentration without any increase in tankage providing a high level of treatment in a small footprint

Acknowledgements

