

Use of Tertiary UF for Water Reuse Reduces Costs and Provides a Reliable Source for Industry

NEWEA 2016 Annual Conference

January 26, 2016

Melanie Blake, Koch Membrane Systems

Water and Wastewater Applications

Municipal Water and Wastewater

Industrial Water and Wastewater

Drinking Water

Seawater Desalination
Surface Water
Ground Water
Brackish Water

Wastewater Treatment

Secondary / Tertiary Treatment

Water Reuse

- Process Water
- Wastewater
- Reuse
- Cooling Tower Blowdown
- Boiler Feedwater
- Produced Water
- High-Purity Water
- Desalination

Typical Membrane Configurations for Water Treatment

	Pressurized HF Cartridges Inside-Out	Pressurized HF Cartridges Outside-In	Submerged Supported HF High Density	Submerged Supported HF Low Density	Tubular Membranes
Oily Wastewater					
Membrane Bio-Reactor					
Difficult Surface Water					
Tertiary Applications					
Seawater Pretreatment					
Easy Surface Water					

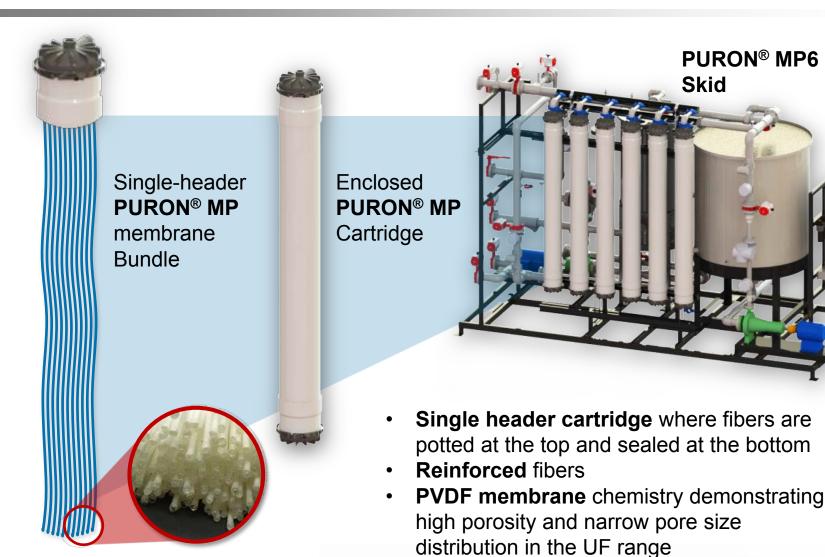
Pretreatment Guidelines

Clarification / Sedimentation

- Most filtration systems require coagulation and clarification prior to filtration.
- Coagulation chemicals are a large operational cost.
- Clarification systems require constant monitoring by operations to maintain good quality.
- Clarification systems do not handle rapid changes in feed water well and are prone to carryover during such events, leading to problems in downstream filtration equipment.
- Many facilities would see a great monetary benefit from being able to bypass clarification if the downstream equipment could be relied upon to still produce the required quality.

PURON® MP

What is it?


PURON® MP Where is it used? Target Applications?

	TARGA® II	PURON® MP	PURON® HF	PURON® MBR	ABCOR®
Membrane Bio-Reactor					
Difficult Surface Water					
Secondary Effluent					
Seawater Pretreatment					
Ground Water (Fe and Mn Removal)					
Easy Surface Water					

PURON® MP - What is it?

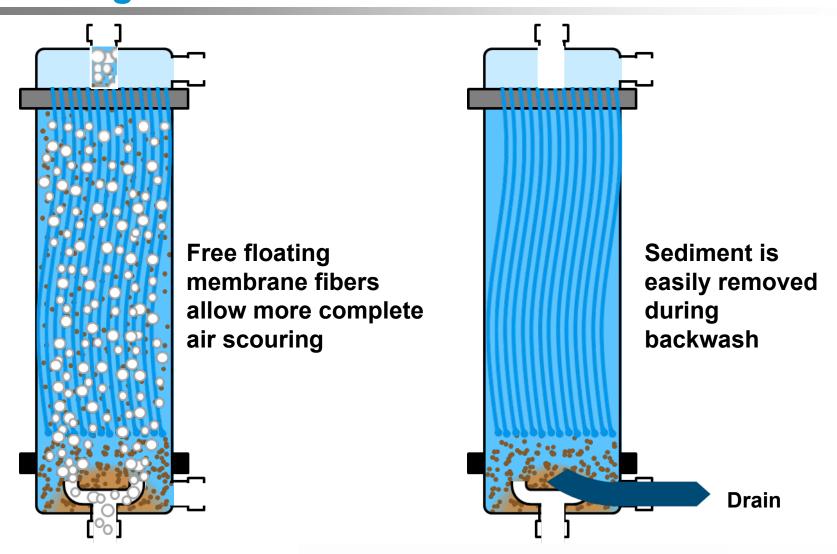
PURON® MP – Product Strengths Excellent Chemistry and Morphology

- PVDF chemistry
- 0.03 micron pore size
- Not all PVDF membranes are the same. Fiber pore size and pore size distribution were optimized leading to morphology that demonstrates low fouling tendency and excellent cleanability

PURON® MP No Bottom Potting

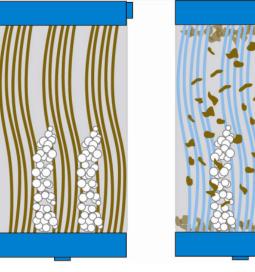
 Air scour is effectively distributed around each fiber

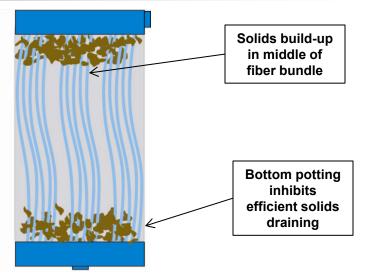
 Solids are easily drained away after air scour in absence of a bottom potting


PURON® MP – Product Strengths Supported Fiber

- The only pressurized cartridge product in the market that uses supported fiber
- Eliminates downtime for fiber repair
- Virtually indestructible fiber
- One of the largest fiber diameters used in a cartridge configuration, yet provides large membrane area and high membrane packing density

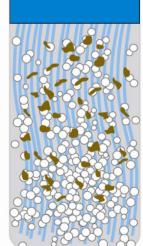
PURON® MP Cartridge Features





Operational Advantages of the PURON® MP Configuration

Top and Bottom potting


Air Scour Start

Air Scour

Solids are removed from middle of fiber bundle

After Air Scour

Top potting only

Solids easily drain between fibers

PURON® MP – Product Strengths Superior Cartridge Design

- Single header design with open bottom allows efficient solid removal during cartridge drain cycle
- Efficient aeration and excellent air scouring distribution
- High packing density
- Top, central vent port eliminates interior fiber bundle sludging
- Operation in dead end mode allows simple cartridge design and compact rack design

PURON® MP Product Differentiators

Supported Fiber

- The only pressurized supported fiber cartridge in the market
- Eliminates fiber breaks

Superior Cartridge Design

- Removal of bottom potting allows for improved aeration and solids draining
- Top, central vent port eliminates interior fiber bundle sludging
- Allows for simple system design only using "dead-end" flow configuration

High Flux and Solids Tolerance

- Sustainable flux rates up to 60 gfd (100 lmh)
- Solids loading up to 100 mg/L and frequent spikes of 250 mg/L TSS. Can tolerate excursions up to 8000 NTU*
- Ability to operate at high recovery and handle clarifier upsets

Excellent Membrane Chemistry

- Low fouling PVDF Chemistry
- 0.03 µm pore size
- Higher flux as a result of reduced fouling

^{*} Some adjustments to operating parameters may be necessary

PURON® MP 8" Diameter Cartridge Main Properties

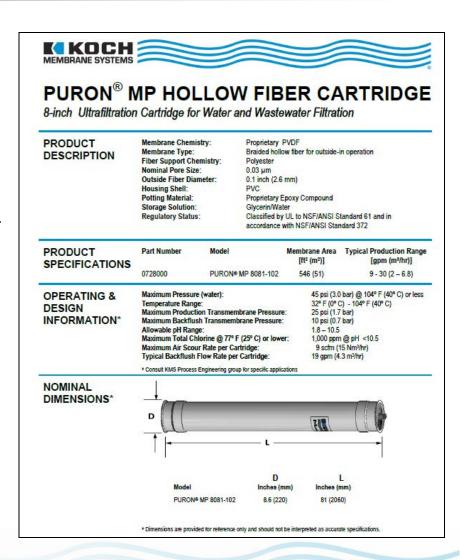
Product Overview

• **Membrane Area**: 546 ft² (51 m²)

• **Pore Size:** 0.03 μm

Membrane Chemistry: PVDF

Filtration Class: Hollow Fiber UF


Feed Flow Path: Outside-In

Wet New Cartridge Weight: 105 lbs (48 Kg)

• **Height**: 81 inch (2 m)

Max Chlorine Cleaning Conc.: 1000 ppm

Free CI

PURON® MP

Where is it used? Target Applications?

Common Applications for Water Filtration

- Wastewater
 - Secondary treated water
 - Tertiary treated water
 - Industrial wastewater
- Surface Water
 - Removal of solids, turbidity, organics, bacteria and color (coagulation may be required for high removal rates)
- Ground Water
 - Iron and Manganese Removal to less than 0.05 mg/L (after oxidation)
 - Ground water under the influence, filtration for virus and bacteria removal
- Seawater (pretreatment to RO)
 - Removal of solids and turbidity
 - Produce low SDI water
- Pretreatment to RO

PURON® MP Drinking Water Treatment Standards

- Drinking Water Standards and regulations vary in different regions
- Water turbidity is often used as a measure of water quality. Maximum turbidity may range between 0.2 and 0.5 NTU
- Water color is often used as a secondary requirement. Typical maximum color for drinking water is 15 CU
- Effluent quality of conventional technologies (multimedia filtration, clarifiers, DAF) is highly dependent on the feed quality, resulting in high effluent turbidity when feed turbidity is high
- The PURON® MP Ultrafiltration technology provides a physical barrier with narrow distribution of pore size, resulting in consistent low effluent turbidity independent of feed quality

PURON® MP Drinking Water Applications

- Product is NSF61 listed confirming construction materials and manufacturing practices are compliant with drinking water requirements
- Pilot tests demonstrated that the product can meet most drinking water criteria
- Pilot data shows 4-6 log removal of 3-micron particles in all applications
- CDPH Approval is pending for drinking water
 - All testing has been successfully completed

PURON® MP

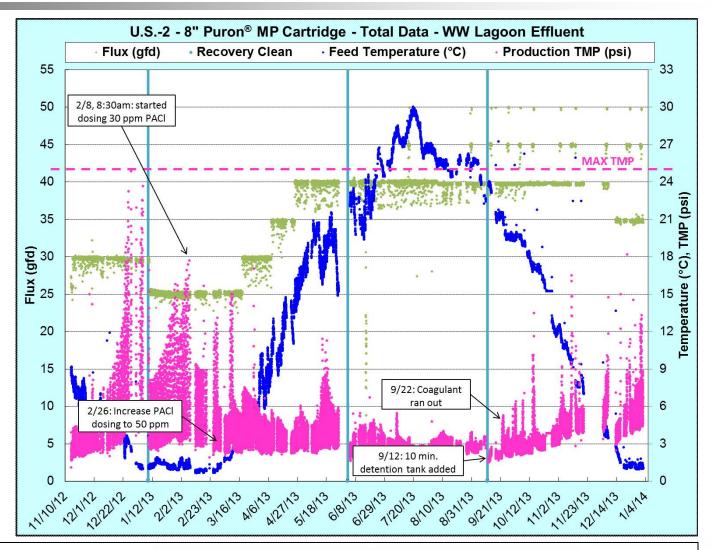
Performance Data

PURON® MP More than 25 Pilots and Full Scale Installations Worldwide

PURON® MP 8 inch Ultrafiltration Pilot

- All but one pilot used full scale 8inch cartridges
- All pilots ran in Dead End mode at a constant flow with automatic controls, backflush and cleaning
- Pilot projects included a variety of applications including:
 - Surface water
 - Municipal secondary and tertiary water treatment
 - Industrial wastewater from pulp and paper, cooling tower blowdown and produced water

PURON® MP Wastewater Pilot Project Summary



Pilot #	Site Location	Application Type	Flux (normalized to 20°C)	Feed Properties and Other Comments
Pilot 2	USA-2	Secondary Effluent	40 gfd (68 lmh)	Typical feed shows turbidity between 2.5 and 15 NTU with peaks up to 40 NTU, 12-15 mg/L TOC. 50 – 100 ppm PACI (controlling to UV254)
Pilot 5	Australia	Secondary Effluent	40 gfd (68 lmh)	Typical feed shows turbidity between 1 and 15 NTU. Regular high algae >20,000 counts. No coagulation.
Pilot 10	USA-3	Tertiary Effluent	50 gfd (85 lmh)	Feed Turbidity 1-10 NTU peaks up to 50 NTU. FeCl ₃ coagulation was trialed for phosphate removal. (TARGA [®] II piloted previously was unsuccessful due to FOG excursions)
Pilot 13	USA-5	Industrial Secondary Effluent	40 gfd (68 lmh)	Feed Turbidity $0.2-1$ NTU with peaks up to 2 NTU. FeCl ₃ trialed to coagulate small solids.

PURON® MP Performance – Secondary Effluent Pilot 2: USA-2 Pilot Test

- Stable performance at 40 gfd with 94% Recovery
- Adding coagulant allowed operation at higher fluxes and better organics removal

Feed Data (ppm):

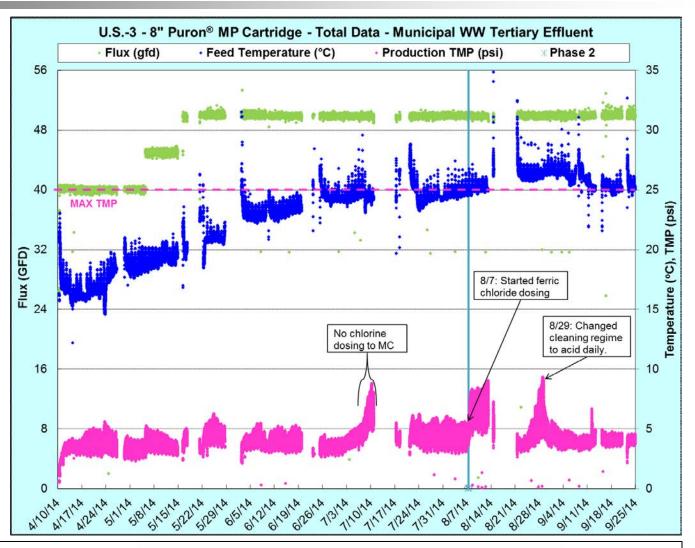
Turbidity: 2.5-30 NTU, 105 NTU peaks

TOC:12-15

Iron: 0.1

PURON® MP Performance – Secondary Effluent Pilot 5: Australia Pilot Test

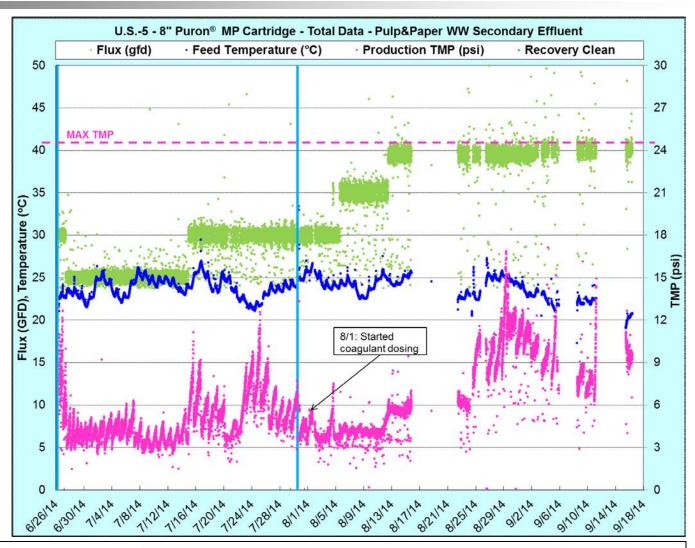
Stable
 performance at
 in the presence
 of high TOC
 and algae, up
 to 60,000
 counts per 100
 mL



Feed Data: Turbidity: 1-15 NTU, with known algae counts >60,000/100 mL

PURON® MP Performance – Tertiary Effluent Pilot 10: USA-3 Pilot Test

- Stable performance at 50 gfd with 96% Recovery
- FeCl₃ dosing trialed for phosphate removal

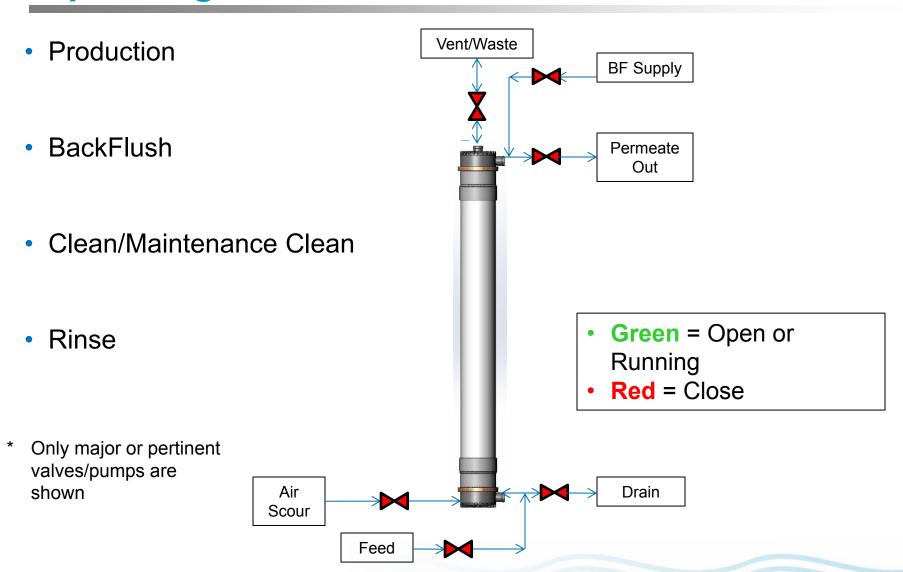


Municipal tertiary WW, Turbidity 10 NTU average, peaks up to 50 NTU

PURON® MP Performance – Secondary Effluent Pilot 13: USA-5 Pilot Test (Industrial Wastewater)

- Stable performance at 30 gfd with 92% Recovery
- Higher flux of 35 gfd with FeCl₃ dosing

Industrial Secondary Wastewater, Turbidity 0.2 – 2 NTU (small pulp and paper fines)



PURON® MP

How does it work?

PURON® MP Operating Modes

PURON® MP

Competitive Landscape

PURON® MP Typical Operating Benefits

	PURON® MP	Typical Inside-Out UF Membrane
Power	>20% savings	High solids/difficult applications often require higher TMP operation and recirculation pumps
Cleaning Chemicals	>60% savings	Often needs chemicals in the backwash cycles in addition to regular cleanings
Pretreatment	Usually not required	Clarification/Sedimentation required for many applications

Summary

- The PURON® MP ultrafiltration product simplifies the filtration process by eliminating pretreatment, and does not require the significant civil works that a submerged system would need.
- The piloting work for the PURON® MP cartridge provided the necessary data to prove the high solid tolerance of the product and validate the design fluxes.
- The PURON® MP product is available for small and large scale projects. Supporting documentation and design tools are ready for use for skid sizes ranging from 3,000 ft² up to 45,000 ft² of membrane area. These skids can be combined into trains to achieve any flow rate.
- The PURON® MP product can significantly reducing plant operating costs and still maintain a consistent and high quality permeate.