

Reusing Stormwater at a University CoGen Facility

Jay Sheehan, PE

New England Water Environment Association (NEWEA) 2016 Annual Conference | January 26, 2016 | Boston, Massachusetts

When Does Water Reuse Make Sense?

When water is scarce

- $\,\circ\,$ Limited water sources
- $\,\circ\,$ Frequent droughts & weather variability
- Regulatory constraints limiting water withdrawal
- \circ Sustainability goals

But also...

When economic conditions are right

- Pre-treatment is required
- Sewer discharge to POTW
- Water purchased from public utility
- Proximate water reuse opportunities
- \circ Permitting limitations for discharge

How Should We Evaluate Reuse?

Feasibility study

- \circ Resources
- \circ Constructability/Implementation
- Permitting
- \circ *Economics*

Economics are a key consideration

- $\,\circ\,$ Must include analysis of the "levelized cost"
 - CapEx + OpEx = total levelized cost
 - Cost / 100 cf is a good metric
 - Compare payback periods
- \odot O&M costs are critical considerations

About the University

Confidential

- $\ensuremath{\circ}$ University policy for confidentiality
- Permitting concerns (premature disclosure to regulators)

Typical urban New England campus

Central utility plant

 $_{\odot}$ Cooling needs

- Low Winter / high Summer demands (170,000 GPD vs 965,000 GPD)
- Large seasonal variability
- Inconsistent / unpredictable needs

The University's Challenge – Project Drivers

Water scarcity (modest concern)

- Regulatory constraints limiting water withdrawal (river protection)
- \odot Sustainability goals (self-imposed)

Economics (significant concern)

- \odot Sewer discharge currently necessary (very costly)
- \odot Water purchased from public utility (rising costs)
- $_{\odot}$ Proximate local reuse opportunities (stormwater, non-contact
 - cooling water, filter backwash, wastewater, RO reject, etc.)
- Permitting limitations (treatment requirements for discharge)

More About the Regulatory Drivers

Prohibition on the discharge of non-contact cooling water to sewer

- Permit required for >100,000 GPD
 - $\circ~\mbox{Regulatory}$ policy intended to encourage reuse

Nutrient removal

 \circ Requirement for P removal from stormwater generated by new projects

Regulatory policy concept – address nutrient issues in receiving waters

River water can be used up to 100,000 GPD without a permit

Feasibility Study

Assessed the feasibility of reuse on four factors:

- 1. Resources
- 2. Constructability/implementation
- 3. Permitting
- 4. Economics

Resources

100

11

1).

Identified Water Source Opportunities

- Multiple existing & future non-contact cooling water/HVAC condensate
- Stormwater (drainage system)
- \circ Future reverse osmosis (RO) reject from CoGen
- \circ Cooling tower blowdown
- $\circ~$ Neutralized industrial wastewater with boiler blowdown
- Future treatment reject & filter backwash from this project (if implemented)
- \circ River water
- City water (current source)

Reviewed multiple combinations of sources

Projected Stormwater Flows

Analyzed three capture conditions based upon 63 years of rainfall data at nearest NOAA station:

- \circ Less than 0.25 inches no captured volume
- $_{\odot}$ <0.25 and <1.2 inches captured volume without overflow
- \circ >1.2 inches captured volume with potential overflow

Impervious capture – roof & yard drains (normally flow to river)

 \circ 0.595 acre feet (194,000 gallons)

 Water balance performed for average winter & summer conditions for each option

 $_{\odot}$ Assess ability of sources to meet full or partial volume demand

• Addresses seasonal demand variability

 Water Quality Assumed for 15 parameters based on prior analytical data and flow and mass balances for various water source combinations.

Base Case	Use <100,000 of River Water	Use >100,000 of River Water
0: Add P removal system to treat SW (do nothing else)	1A: SW & River (CI & Filtration)	1B: 90,000 municipal water
	2A: Add cooling tower blowdown (ultrafiltration & RO)	2B: 0 gals of municipal water
	3A: Zero discharge (Evaporator)	3B: 0 gals of municipal water

Cascading levels of complexity

Constructability/Implementation

Infrastructure Assessment

Existing river intake/discharge pipe

- $_{\odot}$ Assessed structural condition using NASSCO sewer system manual
- Confirmed stormwater collection system discharge into river water intake & discharge piping

Equipment upgrades & modifications

Existing non-related tanks & pipelines for potential repurposing
 New collection & treatment equipment for each option

Greenhouse Gas Assessment

Cursory comparison based on metric tons of CO₂ equivalent per year

Additional emissions from equipment required to implement the options

VS.

Reduced emissions for the power consumed by the municipality for treatment & transmission of water and wastewater

Permitting

Applicable Permits

Water

- Water Management Act (WMA)
- \odot State Waterways Permit Environment
- 401 Water Quality Certificate
- Local Sewer Authority Sewer User Discharge Permit

Environmental

- Environmental Policy Act (EPA)
- $_{\odot}$ State Wetlands Protection Act
- $_{\odot}$ U.S. Army Corps of Engineers

Air

• State Air Permit (determined not applicable under all options)

Economics

100

11.

Cost Evaluation

Capital

 Baseline condition includes need to do something for cooling water discharge & stormwater treatment (nutrients)

• ~\$1M treatment system

O Utilizing cost/100 CF allows direct comparison to utility rates
 O Capital cost recovery period – 15 years

M&O

- Included power consumption at current electrical cost (with escalation)
- Utilized existing water & sewer rates (with escalation)
- Current staff cannot handle additional operations

Conclusions & Recommendations

Reuse Alternatives Are Feasible

 Use of alternative sources provide sufficient water to eliminate purchase of public water

- Average summertime demand could be met under multiple options without purchasing city water
- Stormwater reuse presents a valuable savings
- Permitting is a significant consideration in some options, but only a one-time cost
 - Permitting timeframe estimated at 18 to 24 months

Additional Conclusions

 \odot No options had a lower capital cost than baseline

- All 6 options resulted in lower O&M cost than baseline condition (less water purchase & less sewer discharge)
 - Annual operating savings: \$30K/year to \$700K/year (up to 15%)
- Four options have a lower total cost (capital and O&M) than the baseline condition
 - Reflect a 9% to 15% reduction from the baseline condition
- Simple payback timeframe ranges from 8 years to >200 years
 New projects could reduce reuse project payback further!

Questions & Answers

