Keeping Your Cool: How to Make a CHP Project Successful

Jonathan Keaney, PE
Outline of Presentation

- Overview of NBC and Bucklin Pt. WWTF
- Background of CHP Project
- Discussion of Issues Addressed During Design
- Status of Project
History of Narragansett Bay Commission

- Formed in 1982 by State of Rhode Island
- Operates 2 WWTP’s, CSO facilities and regional collection system
- Significant Efforts in Green energy
 - Installed 3 1.5 MW wind turbines in 2012 at Fields Point WWTF
 - New LEED certified admin building at FPWWTF
 - Current in planning phase for 10 MW solar facility
 - CHP project at Bucklin Point WWTF using existing digester gas
- With all projects, NBC would be generating 83% of annual usage
- Goal of energy neutrality in economically beneficial manner
Bucklin Point WWTF

• Formerly the Blackstone Valley District Commission
• Became part of NBC in 1992
• 28 miles of interceptor sewers and 3 pumps stations
• Biological nutrient removal secondary plant
 • ADFW ~18MGD. Secondary capacity of 46 MGD. Peak wet weather capacity of 116 MGD
 • MLE process upgraded to 4 stage BNR to meet TN of 5 mg/l (2014)
 • UV disinfection for dry weather flow
• Existing anaerobic digesters for solids stabilization
• Hot water boilers for beneficial use of digester gas
Extensive preliminary work performed by NBC staff

Identified basic elements of CHP project at BPWWTF
 - Technical support by SCS Engineers
 - Performed initial technology selection. Engines recommended based on gas quality and higher electrical efficiency
 - Initial review of gas treatment concepts. H2S removal recommended although not required
 - Initial project economics

No interest in back-feeding to electrical utility
 - Reduced project costs. Costs for interconnection highly variable

With existing anaerobic digesters in place, project looked like a winner....
Detailed Technical Issues Needed to be Overcome

• Gas Quality
• Gas Production Rates
• Natural gas usage/blending
• Electrical Distribution/usage/interconnection
• Air permitting
Gas Quality – Siloxane concentrations

- Siloxanes are silica based derivatives of personal care products
- Turns into abrasive sand like substance
- Varying negative impacts
 - Reduce boiler transfer efficiency
 - Increase gas treatment O&M costs
 - Create significant wear on cylinders
- BP experience
 - Estimated boiler efficiency reduced from 80% to 30%
 - Up to ½ in thick on boiler surfaces
Impacts to Project

- Measured siloxane concentrations an order of magnitude higher than typical. Measured at 29.9 ppm.
- Significant potential increase in project cost (capital and O&M) for gas treatment
- NBC initiated and identified personal care product manufacturer discharging to system creating elevated concentrations
- Ongoing sampling to verify reduction to conventional levels. Measured at 1.9 ppm after manufacturer stopped production
Design Gas Flow Rate

- What gas flow condition should be used for design and for sizing of the engine?
- Gas flow meters vs. mass balance calculations?
- 2009 feasibility study mass balance calcs showed significant variability as well
Key Impacts

• Digester gas production sets engine sizing
 • Establishes baseline electrical production
 • Impacts to candidate manufacturers for procurement considerations
 • Considerations for natural gas blending

• Gas flow meters are notoriously un-reliable
 • New thermal dispersion meters installed in 2015

• Considerations for natural gas blending for multiple reasons

• Driver for electrical output and integration with existing electrical system
Relationship between Engine Sizing and Daily Gas Production
Conceptual Project Payback

| Size each, kW | Net kW electric power actually made | Annual digester gas use availability | NG fuel cost per hour | Yearly value of added electric power | Yearly cost of added natural gas | Estmd project cost, approx. million $ | Grant or rebate, approx. million $ | Cost with rebate, approx. million $ | Cogen heat output, million Btuh | Yearly electric power cost savings | Digester gas treatment cost per kWh | Engine O&M unit cost, per kWh | O&M cost total, per year | Project’s yearly cost savings | Grand total yearly savings | Project simple payback, years | 10 Year NPV (at 5%) | 20 Year NPV (at 5%) |
|---------------|-------------------------------------|--------------------------------------|----------------------|-------------------------------------|---------------------------------|-----------------------------------|-------------------------------|-----------------------------------|---------------------------------|----------------------------------|-----------------------------|-----------------------------|---------------------------|--------------------------|------------------------|----------------------|----------------------|
| 820 | 504 | 90% | $0 | $396,985 | $0 | $2.7 | $0 | $2.7 | 3 | $396,985 | $0.013 | $0.016 | $129,987 | $266,998 | $267,000 | 10.1 | -$377,000 | $646,000 |
| 1,000 | 624 | 90% | $0 | $492,064 | $0 | $3.3 | $0 | $3.3 | 3 | $492,064 | $0.013 | $0.016 | $157,560 | $334,504 | $335,000 | 9.9 | -$378,000 | $906,000 |
| 1,000 | 935 | 90% | $2.71 | $737,154 | $21,391 | $3.3 | $0 | $3.3 | 3 | $737,154 | $0.013 | $0.016 | $198,540 | $517,223 | $517,000 | 6.38 | $1,209,000 | $3,191,000 |
| 1,100 | 633 | 90% | $0 | $498,855 | $0 | $3.6 | $0 | $3.6 | 3 | $498,855 | $0.013 | $0.016 | $159,529 | $339,326 | $339,000 | 10.7 | -$673,000 | $626,000 |
| 1,100 | 1,035 | 90% | $3.40 | $815,994 | $26,768 | $3.6 | $0 | $3.6 | 3 | $815,994 | $0.013 | $0.016 | $212,920 | $576,305 | $576,000 | 6.30 | $1,394,000 | $3,602,000 |
| 633 | 591 | 90% | $0 | $466,257 | $0 | $2.3 | $0 | $2.3 | 3 | $466,257 | $0.013 | $0.016 | $150,076 | $316,181 | $316,000 | 7.2 | $477,000 | $1,689,000 |
| 633 | 568 | 90% | $#447,811 | $1,1834 | $-1,1834 | $2.3 | $0 | $2.3 | 3 | $447,811 | $0.013 | $0.016 | $147,125 | $302,521 | $303,000 | 7.5 | $364,000 | $1,525,000 |
| 848 | 572 | 90% | $0 | $451,316 | $0 | $3.1 | $0 | $3.1 | 3 | $451,316 | $0.013 | $0.016 | $145,743 | $305,573 | $306,000 | 10.0 | -$384,000 | $789,000 |
| 848 | 783 | 90% | $1.88 | $617,317 | $14,847 | $3.1 | $0 | $3.1 | 3 | $617,317 | $0.013 | $0.016 | $174,422 | $428,049 | $428,000 | 7.1 | $680,000 | $2,321,000 |
2 Engine Phased Solution

- Sizing based on 620 kW engine with future 2nd engine
 - Sizing fit historical data best
 - Allowed for most high efficiency engine supplies
 - Best compatibility for typical electrical demands
 - Minimal gas blending (only for daily flow variation's)

- Acceptable initial project payback

- Improvements project economics based on smaller investment for second engine. Safe solution
Specifics on Engines

<table>
<thead>
<tr>
<th>Manufacturer and Engine Generator Model</th>
<th>Electric output, kW</th>
<th>Fuel input to the engine</th>
<th>Heat output, MMBtu per hour</th>
<th>Exhaust emissions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MMBtu per hour, LHV</td>
<td>DG Fuel, cfm</td>
<td>Btu per kWhr</td>
<td>NOx</td>
</tr>
<tr>
<td>Caterpillar G3512LE<sup>a</sup></td>
<td>586</td>
<td>5.86</td>
<td>175</td>
<td>10,009</td>
<td>3.40</td>
</tr>
<tr>
<td>Caterpillar G3516LE<sup>a</sup></td>
<td>823</td>
<td>9.05</td>
<td>269</td>
<td>11,010</td>
<td>4.05</td>
</tr>
<tr>
<td>GEJenbacher J312</td>
<td>633</td>
<td>5.67</td>
<td>169</td>
<td>8958</td>
<td>2.68</td>
</tr>
<tr>
<td>Guascor SFGLD480<sup>b</sup></td>
<td>649</td>
<td>6.07</td>
<td>181</td>
<td>9351</td>
<td>NA</td>
</tr>
<tr>
<td>MWM TCG 2016<sup>c</sup></td>
<td>600</td>
<td>4.95</td>
<td>147</td>
<td>8324</td>
<td>2.85</td>
</tr>
<tr>
<td>Waukesha VGF36GLD<sup>d</sup></td>
<td>642</td>
<td>6.06</td>
<td>180</td>
<td>9445</td>
<td>2.61</td>
</tr>
</tbody>
</table>

- Per natural gas fuel data
- Per low Btu fuel (digester gas)
- Set at engine’s best efficiency
- Per natural gas fuel data
- Set at engine’s best efficiency
- Per natural gas fuel data
Natural Gas Blending

• Identified as good tool to improve operation
• Concerns over daily gas variability
• Help with managing daily gas flow variations in lieu of expensive digester gas storage
• Useful during start up for stable operation and isolation of the digester

• Potential economic benefits
 • Use “spark gap” to projects advantage
 • Excessive gas use increases O&M costs
Design Approach for Blending a Balance Between Annual and Daily Gas Flows

OPTION 3

- Engine Fuel Consumption
- Supplement with a small amount of Natural Gas
- Gas Production

GAS PRODUCTION
Cubic Feet/Hour

TIME OF DAY

Brown and Caldwell
Issues Associated with Blending

- Variations in experience with selected engine suppliers
 - Difficulty based differing BTU values
 - Had to design around “worst case scenario”
 - Specified stand alone blending system
 - Allowed for manufactures to self perform if experienced.
 - Choose to design for future engine

- Coordination with Gas utility
 - Define who performs extension of existing gas line
 - Existing gas meter rated at 16,000 cfh
 - Max demand of single engine (Start up condition) 22,000 cfh
Regulatory Considerations

- Air Emissions
 - Preliminary calculations performed to determine major source threshold
 - Uncertainty associated with permitting process and unknown engine performance
 - Many agencies driving towards MACT
 - Risk associated with construction delays and or increased O&M cost

- Electrical Inteconnection
 - Significant changes in application process if back-feeding
 - Issues onsite electrical distribution network
 - Determines new interconnecting switchgear requirements
Creative Solutions

• Confirmed decision to not pursue electrical backfeeding
 • Output of CHP system below minimum electrical demand

• Worked with RIDEM to eliminate risk of additional exhaust treatment
 • Confusing regulations required multiple reviews and discussions (BC and NBC)

• Performed preliminary permit application with design

• Developed timeline within construction documents to mitigate schedule and cost impacts
Current Status

• Bids received and awarded to low bidder
 • Engineers Estimate - $4.9 million
 • Low Bid - $6.44 million (Approximately $1.55M in grants expected)

• Engine selected met expectations
 • Reputable supplier packager
 • Air permitting process in progress

• NBC able to secure grants to improve project financials

• Updated project payback approximately 14 years
Final Payback

Cumulative Cash Flow

Biogas Engine Payback

Year

Capital Cost after grants = $4,890,000

$0

$2,000,000

$4,000,000

$6,000,000

$8,000,000

$7,272,577

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Key Lessons Learned

• Driving for highest payback isn’t always best approach
• Must define and constantly work to meeting project goals
• Understanding all aspects of technical limitations and issues
 • Many of these can be very site specific. No rules of thumb.
• Managing construction budget can be complicated
 • Basing decisions on conceptual or preliminary cost estimate can be challenging
• Potential for increased savings with addition of 2nd engine
Acknowledgments

• Kathyrn Kelly
• Barry Wenskowicz
• James McCaughey
• Tom Brueckner
• SED and Associates
• Lin and Associates
QUESTIONS