

A Low Capital Approach for Performing Separate Centrate Deammonification

Greg Pace January 25, 2016

Acknowledgements

Kathleen O'Connor Sector Connor Energy. Innovation. Solutions. Sarah Galst Wendell Khunjar

Robert Sharp Dennis Daly Joshua Perez-Terrero MANHATTAN COLLEGE

Kartik Chandran

26th Ward WWTP

85 mgd

3 Aeration Tanks,

1 Aeration Tank dedicated to Separate Centrate Treatment (SCT)

- Receives digested sludge from other WWTPs
- ~33% of influent load to secondary treatment is from centrate

26th Ward utilizes nitrification and denitrification for centrate treatment

- Current approach for SCT uses nitrification and dentrification
 - 4.57 g O₂/g NH4-N
 - 6 g glycerin as COD/g N

Implementing deammonification would reduce operating costs

Key requirements for commercial deammonification

Anoxic conditions

Simultaneous presence of ammonia and nitrite

NOB suppression

Long SRT

Selective retention of anammox

	ANAMMOX	ΑΝΙΤΑΜΟΧ	DEMON	CLEARGREEN
Proprietary retention strategy	Tilted plate settler	Plastic carrier and screen	hydrocyclone	SBR Control

Implications for 26th Ward and other SCT facilities

Significant retrofit of tanks and equipment

Significant upside in terms of operating energy and costs using anammox based technology

Glycerol addition results in nitrite accumulation

Simultaneous presence of nitrite and ammonia under anoxic conditions typically used in sidestream anammox systems

Revised approach for facilitating deammonification

- Full nitrification and denitratation of 50% centrate
- Revised approach can yield significant theoretical savings
 - 50% Oxygen
 - 80% Carbon

Current Progress

Pilot setup

Basis of Operation

- During enrichment, no glycerol feed
- Aerobic phase varies from 8 to 24 hrs
- Deammonification phase varies from 24 to 42 hrs

Operational parameters

Key Parameters

- HRT = 48 hr (matches full-scale HRT)
- SRT > 50 day
- Target TIN loading ~ 0.25 kg N/m³-day

Process control strategy

- Grab samples 5 days a week (NH3, NO2, NO3, ortho-P, alkalinity)
- Weekly activity tests
- Adjust airflow in response to grab samples
 - DO monitored; not used for control
- Adjust loading in response to activity tests
- pH monitored

Approach for Enrichment of Anammox

Overall progress

Nitrogen Removal Performance

Nitrogen removal profile

TIN removal occurring during the aerobic period...

Looking into:

- Heterotrophic denitrification
- Nitrous oxide production
- Anammox (granule)

Nitrous Oxide Production

Results indicate that nitrogen oxide production is present and can account for \sim 3% of the total ammonia removed from the system

Aerobic Cycle

FA/MLSS

Anoxic Cycle

Nitrogen removal driven by combination of anammox and denitrification

 $1.0 \text{ NH}_{4}^{*} + 1.32 \text{ NO}_{2}^{*} + 0.066 \text{ HCO}_{3}^{*} + 0.13 \text{ H}^{*} \rightarrow \\ \rightarrow 1.02 \text{ N}_{2} + 0.26 \text{ NO}_{3}^{*} + 0.066 \text{ CH}_{2}\text{O}_{0.5}\text{N}_{0.15} + 2.03 \text{ H}_{2}\text{O}$ (6) Strous et al. 1998

Lessons Learned

- Rapid heat loss suppresses anammox activity
- High operating DO (~2 mg/L) during enrichment speculated to suppress anammox activity
- Anammox can occur in low DO environments, increasing the overall nitrogen removal efficiency of the SCAD Process
- NOB repression is present Although not desired, high free ammonia loading and strict airflow control resulted in NOB repression.
- Glycerol addition may benefit the process, however, is not required to achieve high removal rates

Conceptual strategy for promoting anammox growth in SCT

Current Status and Next Steps

• Molecular analyses

Conceptual Design

Concluding thoughts

Questions and Contact Information

Wendell Khunjar wkhunjar@hazenandsawyer.com

Sarah Galst sgalst@hazenandsawyer.com

Gregory Pace gpace@hazenandsawyer.com

N Removal Performance and Activity Methods

