Agenda

- Background
- Planning Considerations
- Procurement and Contract Packaging
- 100-year Design Life

BACKGROUND

Magnitude of the Challenge: CSO Control

Magnitude of the Challenge: Flooding Relief

Rhode Island Metro

Rhode Island & T St NW

Rhode Island & T St NW

Rhode Island Between First & 2nd St

DC Clean Rivers Projects Anacostia & Potomac River

PROJECT

Planning Considerations Complex Technical & Stakeholder Coordination

- Facility Size & Alignment
- Geotech / Environmental
- Protection of Structures
- Risk Analysis

- 3rd Party Coordination
- Public Outreach
- Agreements / Easements / Permitting
- Maintenance of Traffic

Environment Assessment Third Parties & Agreements Public Outreach Land/ROW/Easement Agency Approval Construction Staging Layout Constructability Route Selection Boring/Coring Laboratory testing Geophysical Geotechnical Reports Public Outreach Traffic Study

Shaft DesignHydTunnel DesignSiteTrenchless DesignPipUnderground ConnectionUtilNear Surface Structural DesignSCAConstructability ReviewEleeRisk Analysis - MitigationsMedCost EstimatingEnhGreen InfrastructureEnhSurvey ArialSecSurvey (Dray & Wet utilities)WetSurvey Staging Areas & ControlHazExisting Facility ResearchOpeMaintenance of TrafficCor

Hydraulics Site Civil (Existing/Final/Staging) Pipeline Design Utility Relocation SCADA Electrical Mechanical Enhancements & Landscaping Environmental Reports Security Wetland Studies Hazardous Waste/Soil Testing/LSP Operating Procedures Commissioning Procedures

Planning Consideration Construction Site Area Requirements

Shaft	Contract	Site Area (Acres)	Shaft Diameter (Feet)	Shaft Depth (Feet)	Comment
Blue Plains Pumping Station & Screening Shafts	Division A	4.1	130 & 75	175	Mining Shaft
Joint Base Bolling Drop Shaft		1.7	50	150	In-line
Poplar Point Junction Shaft		0.5	55	130	In-line
Main Pumping Station Drop Shaft		0.85	60	125	In-line
CSO 019 Drop South & North Shafts	Division H	6.1	65	110	Mining Shaft
CSO 005 Drop Shaft		0.95	15	110	Offset
CSO 007 Drop Shaft		2.1	16.5	105	Offset
M Street Drop Shaft		1.4	63.5	100	In-line
CSO 018 Drop Shaft		1.2	32	130	Offset
Channing Street Mining Shaft	Division P	3	65	90	Mining Shaft
Pump Station Shaft		0.24	22.5	80	Offset
V Street Drop Shaft		0.21	23	100	Offset
Adams Street Drop Shaft		0.25	20	170	Offset

8

Site Constraint Challenges

First Street Tunnel Diversion and Adit

Construction of First St. Tunnel - First & V St NW

Community Interface

Community Interface

PROJECT

PROCUREMENT & CONTRACT PACKAGING

Procurement and Packaging Drivers

- Consent Decree Schedule
 - Fixed Completion Milestones
- Complexity and Type of the Work
 - Near surface Facilities
 - Deep Tunnels and Shafts
 - Inside the Plant (PS)
 - Green Infrastructure
- Third Parties
 - Public Agency Projects (DDOT)
 - Private Development (e.g. CSO 021)
 - Neighborhood Impacts
- Other

Contract Packages

Procurement Strategies: Design-Bid-Build

- Near-Surface Diversion Facilities
 - Familiar with work (sewer, pump stations, vaults)
 - DC Water controls design
 - Maintenance
 - Operation
 - Approach is straight forward
 - Local contractors familiar with the work & associated risks
 - Select the lowest-priced bidder
- Green Infrastructure

Procurement Strategies: Design-Build

- Deep Tunnels and Shafts
 - Early Contractor Involvement
 - Design integration with means and methods
 - Mitigate risks
 - Maximize innovation & understand means & methods
 - Reduce contractor contingencies
 - Schedule compression and flexibility
 - Permanent design is influenced by means & methods
 - Successful use of this project delivery approach on tunnel projects in US
- Critical Near Surface Diversion Facilities
 - Schedule Critical
 - Means and Methods Intense
- Selection based on Best Value (Technical / Price)

Procurement and Packaging Results

	Contract Division	Description	Cost (M)	Status
gn-Build	А	Blue Plains Tunnel	\$330	Complete
	Н	Anacostia River Tunnel (DB Hybrid)	\$253	Construction
	Р	First Street Tunnel (DB Hybrid)	\$157	Construction
	J	Northeast Boundary (DB Hybrid)	\$550	Design
Jesi	I	Main Pumping Station Diversions	\$65	Construction
	D	JBAB Outfall and Diversions	\$40	Construction
	В	Tingey Street Diversions	\$17	Construction
		Total D-B	\$1,412	
ild	W	Blue Plains Demolition	\$5	Complete
-Bu	С	CSO-019 Outfall	\$28	Complete
-Bid	G	CSO-007 Diversion	\$5	Complete
Design	Е	M Street Diversions	\$26	Construction
	Z	Poplar Point Pumping Station	\$42	Design
		Total D-B-B	\$106	

100-year Design Life

Why Design for 100-years

- Providing system redundancy too costly
- Removal from service for inspection and repair extremely difficult
- Partially funded by Century Bonds

Why Design for 100-years

100 – Year Design Considerations

- ACI 350 Code
- ACI 365.1R Service Life Predictions
- Watertight Construction
- Concrete Mix Design
- Temperature Control
- Limiting service load stresses
- Increase sacrificial concrete cover over reinforcing

Acknowledgements

- Carlton Ray Director of DC Clean Rivers Project
- All Engineers and Contractors Working on this Project

Questions and answers

The state of the state

Carlton Ray email: <u>CARLTON.RAY @DCWATER.COM</u> phone: 202-787-4469