Putting Envision® to Work in **Sustainable Planning Projects**

NEWEA Annual Conference & Exhibition January 27, 2016

Today's Agenda

- Envision® Overview
- Steps for Planning with the Tool
- Case Study No. 1 City of Oxnard, CA
- Case Study No. 2 City of Kansas City, MO
- Closing
- Q & A

SarolloTemplateWaterWave.pptx

Sustainability is...

"Meeting the needs of the present without compromising the ability of future generations to meet their own needs".

 Our economic, social and environmental systems must be resilient to short-term shocks, adaptable to longer-term change, healthy and functioning, and efficient in production

irolloTemplateWaterWave.pptx

Envision® Uniquely Addresses America's Infrastructure

- Envision[®] applies to all civil infrastructure
- Addresses design, planning, construction and maintenance
- Applicable at any point in an infrastructure project's life cycle
- Speaks to the triple bottom line: social, economic and environmental goals
- Designed to keep pace with a changing concept of sustainability

Key similarities and differences between LEED® and Envision®

- Framework for sustainable thinking and design
 - Incentivize project teams to stretch toward sustainable goals

LEED® v4

- Focus on occupied buildings
- Energy reduction is a major component of rating system

Envision®

- Focus on infrastructure, which impacts broad sections of community
- Resource use and sustainable siting are major components
- Stakeholder and community involvement also included

Envision®: 5 Categories, 60 Credits and Varying Levels of Achievement

5 Major Categories

Quality of Life

Leadership

Resource Allocation

Natural World

Climate and Risk

Levels of Achievement

Envision® award levels

Recognition Level	Minimum Applicable Points	Minimum in Each Category
Bronze	20%	
Silver Award	30%	No minimum category
Gold Award	40%	percentage required
Platinum Award	50%	

Steps for Using Envision® in Project Planning

- 1. Perform Initial Assessment
- Use Initial Assessment and Project Goals/ Objectives to Inform Development of Evaluation Criteria
- 3. Revisit Initial Assessment to Identify Programmatic Credits versus Project/Plan Specific Credits
- 4. Set credit targets / goals that carry through to design / implementation phases
- 5. Develop Envision® Roadmap for Preliminary / Final Design and Implementation

Case Study No. 1: Planning Oxnard's Future Water Supply

Project Background

Oxnard:

- 2010 US Census Population: 197,899
- Oxnard Plain → Agriculture
- Port Hueneme and Naval Base
- Water supplied from local groundwater and imported sources
- Has a WWTP that discharges to the Ocean
- Has an AWPF that produces recycled water

San Diego

Purpose of Oxnard's Public Works Integrated Master Plan (PWIMP)

- Develop a vision for the future
- Develop 25-yr Capital Improvement Plan (CIP)
- Develop the financial analysis and rate structure to support the PWIMP

Initial Envision® Assessment for the PWIMP

Category	Minimum Target for Points Achievable	Stretch Goal for Points Achievable
QUALITY OF LIFE	12%	26%
LEADERSHIP	26%	42%
RESOURCE	26%	51%
NATURAL WORLD	28%	43%
CLIMATE AND RISK	26%	56%
Total	23%	43%

Proposed Evaluation Criteria Based on Envision® Assessment

Objective	Metric	Unit of Measure		
Goal #1: Provide compliant, reliable, resilient and flexible systems				
Ability to implement in a timely manner	Implementation time (design + permitting + construction/ start-up)	Years		
Goal #2: Investigate green and grey infrastructure with an emphasis on energy efficiency				
Maximize energy efficiency / sustainable energy use	Net non-renewable Energy use (Total E- E produced – Renewable E Purchased?)	kWh / year		
Goal #3: Manage asse	Goal #3: Manage assets effectively (economic sustainability)			
Maximize cost / benefit ratio	Capital Costs	\$ (Total Project Cost)		
	O&M Costs	\$ (O&M costs) per year		
	Life-cycle costs	\$ (Total Annual Costs) per year		
	Benefit / cost ratio	\$ Benefits / \$ costs		

Proposed Evaluation Criteria (cont.)

Objective	Metric	Unit of Measure	
Goal #4: Mitigate and adapt to potential impacts of climate change			
Minimize contribution to climate change through reduction/minimization of GHG emissions	GHG emissions	Metric tons of CO2 equivalent emissions per year	
Goal #5: Protect / enhance environmental / resource sustainability			
Maximize sustainable water use	Potable Water Offset (Potable Water Used – Reuse)	MG per year	
	Groundwater Replenishment	MG per year	
Maximize beneficial reuse of biosolids	Biosolids reused	Dry tons per year	

Using the Envision® Identified Criteria to Compare Alternatives

No.	Goal	1 – GW Treatment	2 – Combined GW & ASR / IPR	3 – ASR / IPR
('+' = 0	good, '++' = better, '+++' =	best)		
#1	Reliability / Redundancy	+	+++	++
#3	Lifecycle Costs	+++	++	+
# 2/4	Energy Use / GHGs	+	++	++
#5	Potable Water Offset	+++	++	+
#5	Groundwater Replenishment	+	++	+++
	Water Quality	+++	+++	+++
	Maximize GW Pumping	+++	+++	+++
	Minimize Imported Water	++	++	++
	Local Control of Water Supply	+	++	+++
		18+	21+	20+

Case Study No. 2: Kansas City's Overflow Control Program

Sewer Separation / Green Infrastructure Project Overview

- Establish layout of new sanitary or storm sewer to provide sewer separation of 280 acres of combined sewer watershed
- Consider green infrastructure opportunities to improve water quality

Opportunities for Green Infrastructure:

- Improve water quality
- Enhance bike/walking path aesthetics
- Restore areas disturbed with community amenity
- Opportunity to educate public about green infrastructure – highly visible area

Envision® Incorporated into Each Project Step

Initial Envision[®] Assessment for Project as a Whole

TBL+ Evaluation Criteria Derived from Envision® Assessment

Societal

- Aesthetic Impact
- Public Visibility /
 Education Potential

Economic

- Lifecycle Costs (capital, O&M and total annual)
- Gray InfrastructureOffset
- Property Value Benefit

Environmental

- Water QualityImprovement
- Storage/Peak Flow Shaving
- Habitat / Vegetation
- Air Quality Impact
- GHG Impact

Technical

- Site Grading Related to BMP Needs
- Ease of Constructability
- Obtaining Use of Land
- Site DisturbanceMitigation Potential

TBL+ Analysis of Green Infrastructure Alternatives

Creating the Envision® Roadmap for Preliminary and Final Design

- Identifying implementation strategies / metrics
- Understanding documentation needs
 - Additional studies
 - Drawings
 - Specifications
- Value Added Analysis
 - Consider Envision[®] credit points vs. estimated cost to implement

Value Added Summary

	Standard Practice (Level 1)	Enhanced Sustainable Practice (Level 2)	Ultimate Sustainable Practice (Level 3)
Total Envision Points Achievable	107 - 154	205 – 293	215 – 320
% of Maximum Envision Points	16 – 23%	31 – 44%	32 – 48%
Projected Award	None – Bronze	Silver – Gold	Silver – Gold
Estimated Added Cost, % of total project	\$25 – \$45k	\$115 – \$185k	\$200 - \$300k
Estimated Added Cost, % of total project	~0.1%	~0.5%	~0.8%

Envision® Employed Early On Leads to Sustainable Decision Making

Are we doing the project right AND are we doing the right project?

- Envision[®] provides framework for doing both throughout a project's planning and design
- At planning level, use to establish criteria for moving the project forward toward sustainable solutions
- At preliminary/final design, use to implement sustainable practices and meet sustainable goals

Questions?

Examples of Envision™ Credits at the Programmatic Level

Quality of Life

QL. 1.1 Improve community quality of life

Sustainable water supply and improved quality boosts overall quality of life throughout City

QL 1.2 Stimulate sustainable growth and development

Securing a sustainable water supply allows modest growth of the community to continue while preserving sufficient resources for all

Leadership

LD 1.1 Provide effective leadership and commitment

Create and uphold specific sustainability policies like Energy and Climate Action Plan

Pursuit and funding of GREAT Program

LD 1.3 Foster collaboration and team

Hold Project Visioning and Eco-Alternatives Charrettes involving project team and stakeholders

Examples of Credits Specific to Water Supply Plan

Resource Management

RA 2.1 Reduce energy consumption

Consider energy efficient pumps/ strategies for all new conveyance facilities/ASR wells

RA 3.1 Protect fresh water availability

Use recycled water in ASR / IPR application to boost city's water supply and reduce reliance on imports

Climate and Risk

CR 1.1 Reduce Greenhouse Gas Emissions

Conduct GHG emissions analysis of project alternatives, both grey and green.

CR 2.3 Prepare for long-term threats

Addition of ASR / IPR provides a more sustainable water supply even in drought conditions

Key Envision® Credits to be Pursued **Moving into Final Design**

Leadership

LD 1.3 / 1.4 Foster Collaboration and Team and Stakeholder Involvement

Hold Project Visioning and Eco-Alternatives Charrettes involving project stakeholders

Quality of Life

QL 2.1 Enhance Public Health & Safety

Improving water quality and reducing CSOs in urban stream

QL 3.3 Enhance Public Space

Enhancing the existing Trolley Trail corridor using bioswales, rain gardens, and other public amenities (benches, public education tools)

Resource Allocation

RA 1.3 Use Recycled Materials

Maximize reuse of the existing system components to the extent possible

Key Envision® Credits to be Pursued Moving into Final Design

Natural World

NW 2.1 Manage Stormwater

Use green BMPs to reduce storm water quantity and improve water quality

NW 2.3 Prevent Surface and Groundwater Contamination

Eliminating CSOs into the urban stream which can contaminate the surface water

NW 3.4 Maintain Wetland and Surface Water Functions

Improve surface water function by enhancing water quality and habitat

Climate and Risk

CR 2.3 Prepare for long-term hazards

Addition of green infrastructure will provide added stormwater storage capacity, to handle larger storms and prevent flooding

