

JANUARY 26TH 2016

Optimization of Supplemental Carbon Feed through Automation

Anthony Giovannone Boyd Gregg

Presentation Overview

- Drivers for Automated Control System
- Performance Metrics
- Nitrack® Control System: General Review
- Case Study: Upper Blackstone WPAD
- Lessons Learned

Drivers for Automated Control Systems

- Consistent Performance/Maintain Compliance
 - Smooth out diurnal patterns
 - Trim peak loads
 - Total nitrogen compliance via denitrification
- Process Efficiency
 - Optimize chemical feed rate
 - Reduce chemical costs
 - Save money!!!
 - Sustainability

Drivers for Automated Control Systems

- Reduce Risk and Redundancy
 - Operator peace of mind
 - Alert operators to problem situation (i.e. power outage, pump problems etc.)
 - Eliminate repetitive tasks (i.e. manual pump speed adjustments)
- Data Collection/Process Diagnostics
 - Central hub for data collection
 - Use control system performance as a means of diagnosing process challenges

Performance Metrics

- Performance Consistency
 - Consistently meeting Permit?
 - Able to smooth out diurnal loading pattern?
- Process Efficiency
 - Lower chemical feed with automation?
 - Observed COD:N
 MicroC 2000TM

Observed COD/N	Rating	Description
< 5.5	Excellent	Utilizing internal/primary effluent carbon as well
5.5 to 7	Good	Majority of carbon going to denitrification
7 to 10	Okay	Significant portion of carbon is unused or going to other process (i.e. aerobic respiration)
>10	Poor	Something is wrong! Check pumps, check analytical equipment, etc.

Nitrack® Control System:

- Single or Multi Basin Continuous flow-through applications, regardless of configuration;
- Allen-Bradley Programmable Logic Controller (PLC) and Human Machine Interface (HMI);
- Designed to accept up to 32 input signals tagged to specific parameters via analogue (wired), WiSi (transmitters included), or EtherNet/IP options;
- 4-20 mA pump output signal
- Alarm auto-dialer for critical alarms;
- Uninterruptible power source (UPS) with an estimated 25 minutes of battery back-up power;
- Firewall-protected **remote internet access**;

Nitrack® Control System: Auto Control Modes

Case Study: Upper Blackstone WPAD

UBWPAD WWTF

- 45 MGD Design Average flow
- A²/O process with 4 biological treatment trains (AT1 AT4)
- Interim permit limits for TN and TP of 6 mg/L and 0.45 mg/L respectively
- Pilot study began at quarter scale and progressed to full scale

Pilot Study Objectives

- Drive the denitrification process to achieve an average effluent NOx-N under 3.5 mg/L and total nitrogen (TN) under 5 mg/L
- Optimize carbon feed using Nitrack® control system to achieve a carbon to nitrogen ratio (COD:N) less than or equal to the theoretical minimum of 5.5 (lbCOD:lbNremoved)

Influent and Effluent Nitratax

UBWPAD A²/O Treatment Train and Sensor Placement

UBWPAD Supplemental Carbon Pilot Schematic

Phase 2: Feedback > Feedforward

Reasoning for Feedback Dominated Control

- Short HRT (Under 30 minutes)
- Influent Probe under influent of Carbon Feed
- Influent COD a fixed input

Phase 2 Performance

- Due to low effluent set-point of 0.7 feedback dominated control overfed carbon leading to high COD:N
- Feedforward portion not responding quickly to diurnal pattern

Phase 3: Feedback = Feedforward

Reasoning for Change in Control Mode

- Desire to decrease COD:N
- Desire to lower effluent NOx-N by accounting for influent diurnal load pattern
- Ability to increase fixed COD Factor

Phase 3 Performance

- Immediate impact: Lower COD/N and lower feed rate
- More varied carbon feed rate
- Still observing COD/N spikes
- Lower effluent nitrate (note: lower influent load)

Phase 4: Feedforward > Feedback

Reasoning for Change in Control Mode

- Focus on process efficiency (COD/N)
- Maintain performance
- Influent loading and diurnal variation increased significantly throughout this period

Phase 4 Performance

- Achieved a lowest COD/N; under 5.5 nearly the entire phase
- To some degree compromised performance however still maintained reasonable effluent Nitrate
- Not able to fully accounting for diurnal loading pattern
- Brought 2 additional trains online during this period, which created some pumping problems.

Phase 5: FF > FB Zone G Input

Reasoning for Change in Sensor Input

- Influent Nitrate signal changed to Zone G probe
- Control algorithm changed to account for IR nitrate load only
- More accurate Feedforward control

Phase 5 Performance

- Most consistent performance
- Significant variation in carbon feed
- Slightly higher COD/N but consistently under 5.5
- Preferred operating mode for future work

Data Summary

Control Phase Data Detail									
Phase	Time Frame	Zone G NOX-N	Zone E NOX-N	Observed COD/N	MicroC Usage	DO			
	Dates	mg/L	mg/L	n/a	gpd	mg/L			
2	5/20 - 6/5	4.2	1.3	10.4	665	0.5			
3	6/5 - 7/8	3.7	1.4	4.6	207	0.3			
4	7/8 - 10/5	5.1	1.3	2.7	260	0.3			
5	10/5 - 10/31	4.8	0.9	4.2	365	0.3			

#1 Rule of Automation

The first rule of any technology used in a business is that automation applied to an efficient operation will magnify the efficiency. The second is that automation applied to an inefficient operation will magnify the inefficiency.

(Bill Gates)

izquotes.com

Lessons Learned: Carbon Feed Automation

- Process is already functioning properly in general, no major operational concerns
 - Optimize-Automate-Optimize
- NO_x-N probe placement is critical
 - Influent probe should be upstream of carbon source injection point
 - Upstream of any denitrification is best (will depend based on configuration)
 - Effluent probe should be in anoxic zone (not re-aeration or aerobic)
- Take your time when scaling inputs and outputs
- Set reasonable effluent set-point
- Balance feedforward and feedback control modes to managed process performance and efficiency.

Acknowledgements

- Upper Blackstone Water Pollution Abatement District: Karla Sangrey, Mark Johnson, Randy Komssi, Joe Nowak, Mike Foisy, Ken Pousland
- CDM Smith: Maureen Neville, David Wagoner, Alex Doody
- Environmental Operation Solutions Inc.: Brad Hice, Mehran Andalib

QUESTIONS?

