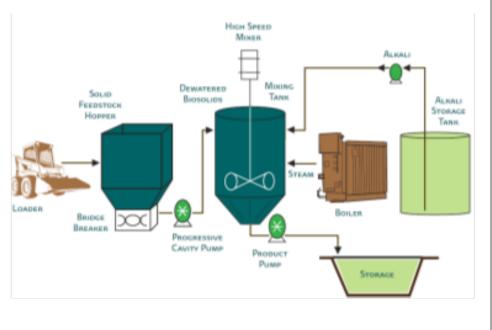
The Use of a Biosolids Product as a Carbon Source for Biological Nutrient Removal

Jeanette Brown, Robert Sharp, Gregory Pace, Riasat Quadir, Liliana Duque, Manhattan College; Ajay Singh, Bill Mullin, Lystek International Inc. , Cambridge, Ontario, Canada; George Nakhla, Western University, London, Ontario, Canada

New England Biosolids Conference October 19, 2015

Content

- Introduction
- Description of Lystek process
- SDNR
 - Batch Test 1
 - Bath Test 2
- SBR
- Next Steps


Lystek Biosolids Treatment Process

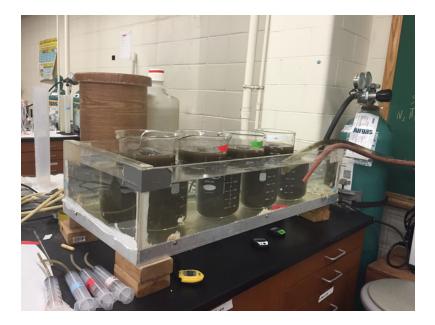
- Low temperature thermal-chemical process
 - energy efficient
 - economical
- Process Conditions
 - combination of heat to 70-75°C (158 167°F),
 - pH 9.5-10.0 using alkali / KOH, and
 - high shear mixing treatment
- Cells disintegrate and hydrolysis of complex particulate organic molecules
 - Results in simpler and rapidly degradable compounds

Lystek Biosolids Treatment Process

- Converts biosolids into
 - high solids (15% -17%),
 - homogeneous,
 - pathogen-free, and
 - nutrient rich Class A EQ liquid product.
- Potential
 - increase VS destruction in anaerobic digesters and
 - external carbon source for BNR

Specific Denitrification Batch Tests

- Two series
 - protocol developed by the Water Environment Research Foundation (WERF)
 - provide endogenous denitrification rates as well as denitrification rates and yields with primary effluent or an external supplemental carbon source
- First series-Lystek produced from a Canadian treatment plant
- Second series-Lystek produced from sludge from the treatment plant in New York City


Project Description

- First phase
 - determine the specific denitrification rate (SDNR) compared to typical carbon sources, glycerol and methanol.
- Second phase
 - determine various denitrification kinetics, optimum COD:N ratio, and cell yield using lab scale SBRs

SNDR Batch Testing

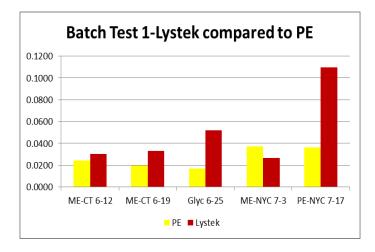
- Four Reactors
 - Reactor 1:
 - Control (endogenous) (RAS + Secondary Effluent)
 - Reactor 2:
 - Primary effluent as carbon source (RAS + Primary Effluent)
 - Reactor 3:
 - Methanol or glycerol (RAS + Secondary Effluent + Carbon Source)
 - Reactor 4:
 - Lystek (RAS + Secondary Effluent + Lystek)

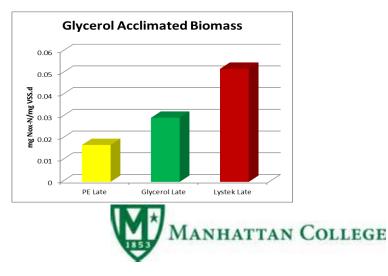
SNDR Batch Testing

- Primary effluent, secondary effluent and RAS
 - collected from treatment plants that were using as carbon sources
 - methanol
 - glycerol
 - Primary effluent
 - known concentration of sodium nitrate fed to each reactor and
 - loss of nitrate and NO_x with time (240 minutes)

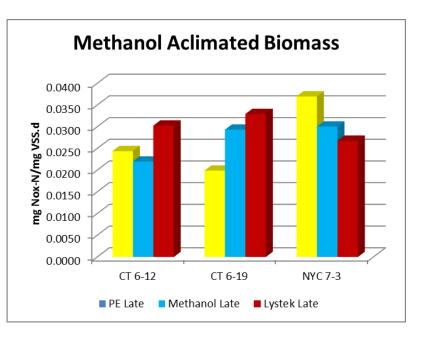
Batch Test-1

- Lystek produced in Canada
- Key product characteristics
 - COD 154000 mg/L
 - Alkalinity 20833 mg/L as *CaCO↓*3↑
 - TS 16%; 46% volatile
- Lystek SDNR compared to other carbon sources

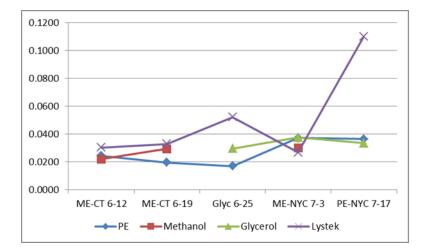

Batch Test-1


- For each SDNR test
 - Early rate (first 30 minutes) and
 - Late rate (30 -240 min)
 - Calculated and reported as mg NO_x-N/mgVSS.d

Batch Test 1-Results

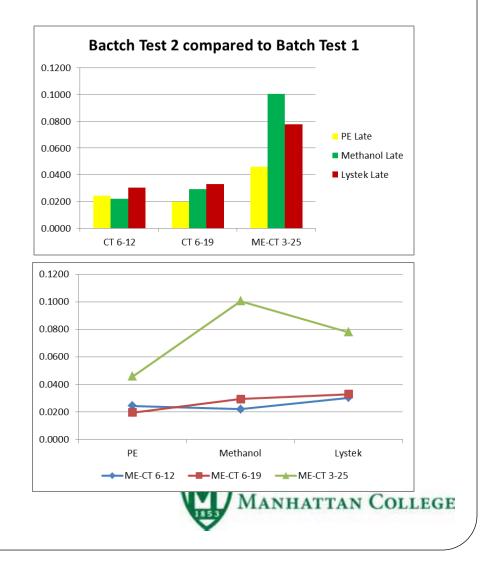

- PE acclimated biomass
 - Lystek had higher late SDNRs than any other carbon source compared to PE except for NYC methanol acclimated plant
- Glycerol acclimated biomass
 - Lystek had higher late SNDRs that PE or Glycerol

Batch Test 1-Results

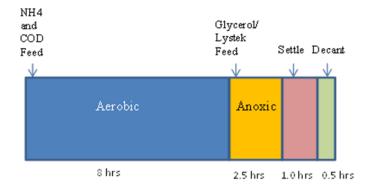

- Methanol acclimated biomass
 - For CT plant
 - Lystek had higher SDNR than PE or methanol (6-12 and 6-19)
 - Plant has used methanol for 12 years (year round)
 - For NYC plant
 - Lystek had lower SDNR than PE and methanol
 - Relatively short term use of methanol

Batch Test-1 Conclusion

 Lystek SNDR higher in almost all cases as compared to PE, methanol, or glycerol


Batch Test-2

- Lystek made from solids from a New York treatment plant
- Key product characteristics
 - COD 136,000 mg/L (154000 mg/L)
 - Alkalinity 9275 mg/L (20800 mg/L as CaCO₃)
 - TS 15%; 62% volatile (16%, 46%)
- Compare SDNR


Batch Test-2 Results

- PE acclimated biomass
- Methanol acclimated biomass
- Rates much higher for methanol and PE than Batch Test-1
- Lystek rate higher compared to PE, lower compared to methanol

SBR Testing

- Two, 6-liter Sequencing Batch Reactors
- Timers and syringe pumps
 - carbon source and
 - ammonia
- Aerobic conditions using diffuser connected to an air supply
- Anoxic conditions maintained by stopping air flow and adding N₂ gas
 - maintain a D.O. < 0.01 mg/ l.

SBR Testing

- Control reactor fed glycerol
- Originally used with "as received" Lystek
 - Too high a solids content
 - Would not be done in a treatment plant
- In a typical WRRF
 - Lystek would be dewatered
 - Centrate/filtrate returned to treatment process

SBR Testing

- Some problems with operation of SBR not attributed to Lystek
- Changed operation on 9/23
- Current procedure
 - Lystek centrifuged
 - Centrate used as carbon source
 - Three 8 hours cycles per day
 - Increased decant volume

Conclusion

- Lystek has potential as carbon source based on SDNR batch testing
 - Rates better than PE
 - Most cases better
 - Methanol
 - Glycerol
- Results from SBR will give better understanding of potential

