Algal-Sludge Granules as a Novel Technique for Wastewater Treatment

Ahmed S. Abouhend^{1,2}

¹ Civil & Env. Eng. Dep., Umass Amherst, USA ² Marine Pollution Lab., NIOF, Egypt

The Northeast Residuals And Biosolids Symposium, Oct. 19, 2015

Background

Conventional Wastewater Treatment Process

Secondary Treatment

Wastewater as a Significant Energy Source

- > Chemical energy in wastewater
 - Based on COD; $1 m^3 = 6-8 MJ$
- Energy used for treatment
 - $1 m^3 = 0.6 kW h = 2.16 MJ$

Wastewater holds about 2-5 times the energy used to treat it.

The Question: How to Recover This Energy?

Alternative Technologies

Algal-based Wastewater Treatment Technologies

Most wastewater treatment lagoons in the U.S. do not harvest algae biomass.

http://algaebiogas.eu/algal_bacterial_wwt

The Novel Technology: Algae-Sludge Granules

How the opportunity was identified?

I MassAmherst

Application: Sequenced Batch Reactors

- \square 2 SBRs (1.5 L each) by 4- 6 hrs cycles/day. $/R_1$
- □ The WW is the primary effluent of AWWTP.
- □ 150 days of operation.
- 2 Light sequences were studied;

Days of Operation

64 72

47

UMassAmherst Potential Impact of Treatment Process

Influent WW

Cycling and Mixing

After 15 min Settling

Effluent Quality

COD Removal

Effluent Quality

Total Nitrogen (TN)

Days of Operation

Effluent Quality

Ammonia (NH₃)

Effluent Quality

Phosphate (PO₄)

Days of Operat

Self Aeration : Natural Oxygenation

Specific Oxygen Production Rate:

8.0 (mg/gVSS)/hr

Biomass Separation and Energy Production

The Yield (Biomass-Energy Conversion)

The biomass yields were up to 400% higher than typical activated sludge:

Conclusion

Algae-Sludge Granules Technology

- Demonstrated wastewater treatment without external aeration.
- Allows for recovery of energy laden in WW in the form of harvestable biomass and leads to substantial cost reduction in WW treatment.
- Achieves environmental benefits reducing the green house gases emitted into the atmosphere
- The successful application could provide an alternative to the activated sludge process.

Current and Future Research

- Operating a pilot ASG unit at AWWTP:
 - * Now; 30 L reactor as SBR
 - * Our goal: 1000-2000 L System
- Investigation on several others
 - ✓ Pathogens
 - ✓ Heavy metals
- Anaerobic digestion of ASG biogranules.

Acknowledgement

- Park Lab Group
- ✓ Chul Park, Ph.D.
- 🗸 Jeongmi Seo
- ✓ Christopher Watt
- 🗸 Adam McNair

□ NIOF, Egypt

✓ Khalid El-Moselhy, Ph.D.

<u>Funding</u>

Questions

Civil & Environmental Engineering

20