Evaluating the Role of Nitrification in Pharmaceutical Biodegradation

C. Andrew Ramsburg, Ph.D.

Associate Professor

Department of Civil and Environmental Engineering

Tufts University

Medford, Massachusetts, USA

29 October 2014

andrew.ramsburg@tufts.edu 617-627-4286

School of Engineering

CBET-1438221

Collaborators & Contributors

Dr. Sandeep Sathyamoorthy Columbia, Earth & Environ. Eng.

Dr. Steven Chapra Tufts, Civil & Environ. Eng.

Dr. Kartik Chandran Columbia, Earth & Environ. Eng.

Ms. Amy Hunter

Tufts, Civil & Environ. Eng.

Dr. John Durant Tufts, Civil & Environ. Eng.

Dr. Richard Vogel Tufts, Civil & Environ. Eng.

Dr. Giovanni Widmer Tufts, Veterinary School

Microconstituents & Emerging Contaminants

Pr on

- Endocrine disrupting compounds
- Pharmaceuticals
- Personal care products
- Persistent Organic Pollutants
- Prions
- Nanoparticles

Focus on Pharmaceuticals (PhACs) motivation for research

- PhACs (in general) are important in modern society clear benefits to human and animal health
- PhACs are complex molecules that are often *designed* to be bioactive
- Research has only begun to explore the influence of PhACs in the natural and engineered environments (maybe 10% of most used PhACs have been studied; even less have been extensively studied)
- Increasing evidence to suggest PhACs can have deleterious environmental effects.
- Influence and effects of long-term low-concentration (<< therapeutic doses) *mixtures* on ecosystem health is an *open question*.
- Current evidence suggests some PhACs may be attenuated more in biological treatment systems employed for nutrient management

Pharmaceuticals

low concentration, long-term exposure – mixture effects?

Research over the last decade or so, has identified:

- Presence of pharmaceuticals in our waters (landmark study: Kolpin et al. 2002 Environ Sci. Technol.)
- Certain pharmaceuticals can alter behavior, mobility and development in aquatic species (e.g., Ruiz et. al., 2010 *Environ. Sci. Techol.*; Quinn et. al., 2009, Sci Total Environ; Fent et. al., 2006, Aquat. Toxicol.)

More recently, there is preliminary evidence to suggest pharmaceuticals may:

- <u>Bioaccumulate in plants and animals (e.g., Zenker et al. 2014 review J.</u> Environ. Mgt.; Wu et al. 2014, Environ. Sci. Technol.)
- Cause change in animal behavior and physiology <u>outside</u> of the aquatic environment (e.g., birds Bean et al. 2014 *Phil. Trans. R. Soc. B*)

Links below are videos describing *Phil. Trans. R. Soc. B.* edition (as well as the starling study referenced above) related to PhAC impacts on wildlife and ecosystems

http://www.youtube.com/watch?v=oByacXyaH00&feature=player_embedded http://www.youtube.com/watch?feature=player_embedded&v=HxuBub1IIIE

Pharmaceuticals in the Environment

Focus on Nitrification (denitrification in future)

acknowledged that heterotrophs have important role

- Nitrification is an essential process to manage the nitrogen cycle - NAE grand challenge – (NAE, 2008)
- WWTPs are required to meet increasingly stringent effluent nitrogen criteria
- Ammonia Monooxygenase (AMO) has broad substrate range (Keener and Arp, 1994; Hooper et. al., 1997; Skotnicka-Pitak et. al., 2009, Taher and Chandra, 2013)
 - AMO: Ammonia Monooxygenase (membrane bound protein)
 - HAO: Hydroxylamine Oxidoreductase (periplasmic protein)
 - NXR: Nitrite Oxidoreductase

Pharmaceutical Attenuation during Nitrification

Pharmaceutical Attenuation during Nitrification

Possible role of sorption & how to predict it

K_{ow} and *D* models sorption to activated sludge solids

Negatively Charged and Uncharged

Negatively Charged & Neutral Data (n _{DATA} = 109 , n _{PhACs} = 30)							
Model Summary			Model Performance				
Predictor	Coeff.	SE.Coeff.	S	R ²	adj-R ²	pred-R ²	NSE
Constant	-1.151	0.201	0.77	7.2%	6.3%	3.9%	0.07
log K _{ow}	0.144	0.050					
Constant	-1.379	0.101	0.60	44.0%	43.5%	41.8%	0.44
log D	0.327	0.036					

Tufts

Positively Charged

Positively Charged Data (n _{DATA} = 108, n _{PHACs} = 32)							
Model Summary			Model Performance				
Predictor	Coeff.	SE.Coeff.	S	R ²	adj-R ²	pred-R ²	NSE
Constant	-0.738	0.128	0.51	36.1%	35.5%	33.6%	0.36
log K _{ow}	0.237	0.031					
Constant	-0.108	0.082	0.58	17.4%	16.6%	14.2%	0.17
log D	0.144	0.030					

Sathyamoorthy & Ramsburg, 2013, Chemosphere

Polyparameter models

improved predictive capability for sorption to activate sludge solids?

Biotransformation during nitrification

focus on three beta blockers...but also examining benzodiazepines

Overview of Batch Experiments

biomass from nitrification enrichment SBR

- Analyses:
 - NH₃, NO₂⁻, NO₃⁻ (IC-COND)
 - PhAC (LC-FLD)
 - Solids (TSS/VSS)
 - Biomass (qPCR & community profiling)

	Biod	egradation d	luring Nitrif	Biodeg during Nitrite Oxidation			
	NC (Nit. Control)	NI (Nit. Inhib. Control)	NE1 (Expt)	NE2 (Expt)	NxC (Nit. Ox. Control)	NxE1 (Nit.Ox. Expt)	NxE2 (Nit.Ox. Expt)
Biomass	✓	~	\checkmark	~	\checkmark	\checkmark	~
NitriterNi a-N	\checkmark	~	\checkmark	~	~	~	~
Nutrients	✓	~	~	~	~	~	~
PhAC		✓	~	✓		~	~
ATU		✓			~	~	✓

Results: ATN observed to degrade

appears linked to ammonia oxidation

Modeling Framework

* Nitrification inhibition using Allylthiourea (ATU), a specific AOB inhibitor (Ginestet et. al., 1998)

Cometabolism Model

- Assumptions
 - due to cometabolic
 biodegradation by HET or AOB
 - data suggest NOB are not involved
- Functional requirements
 - PhAC biodegradation model should be adaptable for ASM framework

 $q_{c} = (T_{c}^{g}q_{g} + k_{c})\frac{S_{c}}{(K_{sc} + S_{c})} \text{ integrated model for cometabolism (Criddle, 1993)}$ $= \int ([\{T_{PhAC-AOB}\mu_{AOB}\} + [k_{PhAC-AOB}] X_{AOB}] + [k_{PhAC-AOB}] X_{AOB}] + [k_{PhAC-AOB}] X_{AOB}] + [k_{PhAC-AOB}] X_{AOB}] + [k_{PhAC-HET}] X_{HET}] + [k_{PhAC-HET}] + [k_{PhAC-HET}] X_{HET}] + [k_{PhAC-HET}] + [k_{PhAC-HET}$

Nitrification Model

PhAC inhibition of ammonia oxidation

Inhibition Implications

Sathyamoorthy et al., 2013, ES&T

- Competitive inhibition may influence nitrification processes – needs more research
- Implication(s) for plants likely more muted
- But, competitive inhibition effects can be additive – how many PhACs exert this effect?

Plant influent	2.3 μg/L			
Primary effluent	1.2-2.2 μg/L			
Plant effluent	0.6-1.7 μg/L			

Ternes et al., 2007, Lee et al., 2007

Cometabolic Process Based Model

and comparison to pseudo-first order (PFO) model

Parameter sensitivity

 Use elasticities to evaluate sensitivity of CPB model coefficients to AOB & NOB biokinetics

Sathyamoorthy et al., 2014, Environmental Modelling & Software

Implications of sensitivity

an example with temperature

- Limited influence of ammonia concentration on variation of biodegradation rate
- Temperature sensitivity of $k_{\text{ATN-AOB}}$ is due to sensitivity to $\mu_{\text{max-AOB}}$

Sathyamoorthy et al., 2014, Environmental Modelling & Software

Summary

- Atenolol and Naproxen are cometabolized by ammonia oxidizing bacteria
- Atenolol (and other PhACs) observed to competatively inhibit ammonia oxidation
- Degradation very likely results from fortuitous interactions with available/expressed ammonia monooxygenase
- Cometabolism was modeled using a new approach cometabolic process based model (CPB)
- Model parameters are relatively insensitive to nitrification biokinetic parameters – T is insensitive, k sensitive to maximum specific growth rate
- CPB was developed to be integrated within the ASM framework, and can be readily expanded to include mechanistic description of degradation by heterotrophs.