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Focus on Pharmaceuticals (PhACs) ~ €3Tufts

motivation for research

e PhACs (in general) are important in modern society - clear benefits to
human and animal health

 PhACs are complex molecules that are often designed to be bioactive

 Research has only begun to explore the influence of PhACs in the
natural and engineered environments (maybe 10% of most used
PhACs have been studied; even less have been extensively studied)

* |ncreasing evidence to suggest PhACs can have deleterious
environmental effects.

e Influence and effects of long-term low-concentration (<< therapeutic
doses) mixtures on ecosystem health is an open question.

e Current evidence suggests some PhACs may be attenuated more in
biological treatment systems employed for nutrient management
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Pharmaceuticals

low concentration, long-term exposure - mixture effects?

Research over the last decade or so, has identified:
* Presence of pharmaceuticals in our waters

(landmark study: Kolpin et al. 2002 Environ Sci. F -
Technol.) €
e (Certain pharmaceuticals can alter behavior, iw" \ -

mobility and development in aquatic species (e.g.,
Ruiz et. al., 2010 Environ. Sci. Techol.; Quinn et. ¢
al., 2009, Sci Total Environ; Fent et. al., 2006, -3
Aquat. Toxicol.)

.3}

More recently, there is preliminary evidence to suggest pharmaceuticals may:

e Bioaccumulate in plants and animals (e.g., Zenker et al. 2014 review J.
Environ. Mgt.; Wu et al. 2014, Environ. Sci. Technol.)

e Cause change in animal behavior and physiology outside of the aquatic
environment (e.g., birds - Bean et al. 2014 Phil. Trans. R. Soc. B)

Links below are videos describing Phil. Trans. R. Soc. B. edition (as well as the starling

study referenced above) related to PhAC impacts on wildlife and ecosystems

http://www.youtube.com/watch?v=o0ByacXyaHOO&feature=player_embedded
http://www.youtube.com/watch?feature=player_embedded&v=HxuBubllllE




Pharmaceuticals in the Environment & Tufts
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Focus on Nitrification (denitrification in future) TUfts

acknowledged that heterotrophs have important role

Ammonia Oxidizing Bacteria Nitrite Oxidizing Bacteria

AOB OB}
Oz = — — |l et et =g — — — — = - >
| |
| |
NH3 — * —» NH,OH — NO, +— » NO3
.| AMO T HAO T | NXR ’
L@ 4e’ ] + [}
+ I 5H
2H 2e P ¥
|
2
Cell
Metabolism
Figure adapted from Arp & Stein (2003) i
NH,'
b " Periplasm
NH,; + 0, + NH;OIH NO;
2“ +5H"
M 20" nH’

Ccmd52

e
[AMO — 2% 4 1. },I bc;} [C.IOx] QHzi,[Nag}ﬂ

1120, H,0 NAD'  NADH
+2H"

Cytoplasm
Figure from Arp & Stein (2003)

Nitrification is an essential process
to manage the nitrogen cycle - NAE
grand challenge - (NAE, 2008)

WWTPs are required to meet
increasingly stringent effluent
nitrogen criteria

Ammonia Monooxygenase (AMO) has
broad substrate range (Keener and
Arp, 1994; Hooper et. al., 1997;
Skotnicka-Pitak et. al., 2009, Taher
and Chandra, 2013)

AMO: Ammonia Monooxygenase
(membrane bound protein)

HAO: Hydroxylamine Oxidoreductase
(periplasmic protein)

NXR: Nitrite Oxidoreductase
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Pharmaceutical Attenuation
during Nitrification

PhAC R
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e Low conc. in System
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Pharmaceutical Attenuation
during Nitrification
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Assume negligible

« Low yield == unfavourable WASTE SLUDGE
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Possible role of sorption & how to predict it
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K,, and D models

sorption to activated sludge solids

Negatively Charged and Uncharged

Negatively Charged & Neutral Data (npara = 109, Nppacs= 30)

Positively Charged

Positively Charged Data (npara = 108, npyacs = 32)

Model Summary Model Performance Model Summary Model Performance
Predictor |Coeff. |SE.Coeff.| S R’ |adj-R’|pred-R’| NSE Predictor |Coeff. |SE.Coeff.| S R®> |adj-R?| pred-R* | NSE
Constant [-1.151 |0.201 0.77 |7.2% |6.3% |[3.9% 0.07 Constant |-0.738 |0.128 0.51 [36.1% [35.5% |33.6% 0.36
logKow  |0.144  |0.050 logKow  |0.237 |0.031
Constant |[-1.379 |0.101 0.60 |44.0% |43.5% |41.8% |0.44 Constant |-0.108 |0.082 0.58 [17.4% [16.6% |14.2% 0.17
log D 0.327 0.036 log D 0.144 10.030
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Polyparameter models

improved predictive capability for sorption to activate sludge solids?
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ﬂ’hACs

| log MV

Positively
Charged

Negatively Charged &
Uncharged PhACs

log Kow
log vdWSA

1 2 3 4 5
No. of Predictors

nHBD || a.,

e Polyparameter models are a

significant improvement; but still
relatively poor as a predictive tool

 Predictive models need to capture

sludge interface properties
e question: what parameters?
e some possible examples: CEC,
EPS content

Sathyamoorthy & Ramsburg, 2013, Chemosphere



Biotransformation during nitrification
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focus on three beta blockers...but also examining benzodiazepines

Atenolol (ATN)
US 2010 prescriptions:
~36 million (generics)

Metoprolol (MET)
US 2010 prescriptions:
~66.9 million (generics)

OH

H
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Sotalol (SOT)
US 2010 prescriptions:
not in Top 200
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Overview of Batch Experiments

biomass from nitrification enrichment SBR

e Analyses:
— NH;, NO,, NO, (IC-COND)
— PhAC (LC-FLD)

— Solids (TSS/VSS)
— Biomass (QPCR & community profiling)

UNIVERSITY

Biodegradation during Nitrification

Biodeg during Nitrite Oxidation

NC NI NxC NxE1l NxE2
. . . NE1 NE2 . . .
(Nit. [(Nit. Inhib. (Expt) (Expt) (Nit. Ox. | (Nit.Ox. (Nit.Ox.
X X

Control) | Control) > > Control) Expt) Expt)
Biomass v v v v v v v
Nitrite+Na-N v v v v v v v
Nutrients v v v v v v v
PhAC v v v v v
ATU v v v v
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Results: ATN observed to degrade

appears linked to ammonia oxidation

(1) MET () soT (111) ATN

Reactor: 14 Reactor: #1-4 Reactor: 1-4 5-7
VSS (mg/L) 560 VSS (mg/L) 1,030 VSS (mg/L) 790 900
TSS (mg/L) 1,160 TSS (mg/L) 2,310 TSS (mg/L) 1,730 | 2,000

- NIT-EXPT.:
O NC (no PhAC)

18 v@ t e AN A & NI
16 + ©\L i \c( Y Q;L A NElATU)
% ¥V NE2

PhAC Conc. (ug/L)

Zé %% %@%@%@ g 3 i@ﬁ ; é‘
o | ;; %ﬁ :

BOOBO- BB 838-6-8-080-8-BL-8-O—6—
4 8 10 12 0 2 4 6 8 10 12
Time (h) Time (h) Time (h)

Sathyamoorthy et al., 2013, Environ. Sci. Technol.
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Modeling Framework
Experimental data
Reactor 1 Reactor 2 Reactors 3 & 4
(Nitrification (Nitrification Inhibition (Exptl
Control) Control) Reactors)
l Y
nitrification : PLIUAE :
modelg biodegradation Coupled
model nitrification
Y ‘ &
Estimates of 5 PhAC
XaoB,10 & XnoB, 10 ‘L biodegradation
PhAC deg. kinetics model
(no nitrification™)

8 Nitrification modeled using a 2-step nitrification model \
(Chandran & Smets,2000; Hiatt & Grady,2008) PhAC deg. kinetics

* Nitrification inhibition using Allylthiourea (ATU), a specific due to nitrification
AOB inhibitor (Ginestet et. al., 1998)
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Cometabolism Model

e Assumptions  Functional requirements
— due to cometabolic — PhAC biodegradation model
biodegradation by HET or AOB should be adaptable for ASM
— data suggest NOB are not involved framework

e cqg +kc) Ksc +S integrated model for cometabolism (Criddle, 1993)

C

‘ | Modify to fit into ASM framework (assume: S.<< K )

ASppac onnc_nos aos |+ [Kenac_aos [} X A B]+}S Cometabolic Process Based (CPB)
- PhAC

dt {[{[TPhAC HET HuET ]+ PhAC-HET ]}X HET] Model for PhAC biodegradation

For batch experiments assume: dX, ../dt ~ 0 => X .. =
constant)

dSpiac _ {[{[TPhAC AOB/UAOB]"'[ PhAC—AOB ]} AOB]+
]

S PhAC

dt

[{aPhAC HET} HET



10 4

Sy (Mg-N/L)

0.1 4

0.01

Nitrification Model

PhAC inhibition of ammonia oxidation

1 Inhibition

R Competitive
-. %\ / Inhibition
A \
NN

Experimental data
O Reactor 1
A Reactor 2
VY Reactor 3

CPB model

Reactor 1
Reactor 3
Reactor 4

Sathyamoorthy et al., 2013, ES&T

dt MAX,AO

¢3Tufts
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T Hyax  aoB

No Inhibition

Competitive Inhibition

S
AN A S

- bAOB X AOB

KI,ATN—AOB

SSE  AIC,
63.6 306
155  -0.4
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Inhibition Implications

for atenolol o
10 e Competitive inhibition may

g 1K influence nitrification
ATN ATN" ", ATN-AOB processes — needs more
08 4 K| atn-aos~ 1.8 pg/L

research

* Implication(s) for plants

Sarn= 0 pg/L likely more muted

06

e But, competitive inhibition
effects can be additive — how

W Hosax aop With PhAC present

- many PhACs exert this
Samy = 5 Mo/ effect?
02 .
Plant influent 2.3 pg/L
O
r N ERAS T 1.2-2.2 ug/L
0.0 A , ’ , .
0.0 0.2 0.4 06 0.8 1.0

Plant effluent 0.6-1.7 pg/L

in the absence of PhAC
NPMM'AOB Ternes et al., 2007, Lee et al., 2007
Sathyamoorthy et al., 2013, ES&T



Cometabolic Process Based Model  €3Tufts

and comparison to pseudo-first order (PFO) model

SNH
(mg-N'L'l)

SNO2 & SNO3

SATN

(mg-N'L'l)

(ng/Ll)

SNO2 data shown using
same symbols with cross-hairs

S

S

NIT-Expts

VsS (mg/L)

16 TSS (mg/L)

790

1,730

2 T PFO model fits - dashed lines
CPB model fits - solid lines

0000000000 © } @

0 5 10 15 20
Time (h)

UNIVERSITY

dSppac {[{[TPhACAOB Hpos ]"’ [k PhAC—AOB ]}X AOB ]"‘}
=- Sphac
dt HammoHH}XHH]

CPB model coefficients

TaTN-AOB 71.5+22.7 L.g-COD*!

W 16.1+56 L.g-CODL.d?!
CIRSRSRS 07 3+4.4 L.g-CODLd!

Compared to 14.07
using PFO model

Sum of Square Errors (SSE)

Reactor 2 4.68

Reactors 3 & 4 @

Small Sample AIC for expt’l data

Best PFO model -8.24
CPB model -27.76
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Parameter sensitivity

 Use elasticities to evaluate sensitivity of CPB model coefficients to AOB &
NOB biokinetics

Elasticity (&y,): fractional change in output (y) P 8%
given a 1% change in input (x) " 2%
. . . . K® A -~ 1 TATN-AOB
Apply dimensionless elasticity NO2 [ ATNAAGE
(i.e., elasticity about the mean Dros 1 K| ATN-AOB
values from Monte Carlo x E
simulations) (Sankarsubramaniam Hax —nos 1
et. al., 2001) K1 =4 S
= No assumptions related to «
. . b T :%
residuals behavior AOB
= Derived using chain-rule Hmax -aoB 7 7 2

Use ordinary least squares
regression

-0.2 00 02 04 06 08 1.0
Elasticity

Sathyamoorthy et al., 2014, Environmental Modelling & Software



Implications of sensitivity ¢3Tufts

an example with temperature

Syv=1 ng/L

3 Kinetic Parameters Bi N lized Rate of Cometabolism
-S 50% ) -é 60% A iomass Normalized Rate o /
© ©
S / =
0 40% - / m 40% -
s c
@ 4 S
E 20% - Tamn-a0s yd S 20% -
g e S

o
g 0% I — / P —— g’ 0% n
@ e t
§ K\ arn-a0e / 3 Sy = 0.01 mg-N/L
S -20% - ~ 5 -20% -
o ~ o
(1] 06 ©
) 1=l
®  -40% -7 8 -40% -
g g —
= = S, =10 mg-N/L
.g -60% - -§ -60% - NH g
1]
> T T T T g T T T T

10 12 14 16 18 20 10 12 14 16 18 20
Temperature (°C) Temperature (°C)

* Limited influence of ammonia concentration on variation of
biodegradation rate
* Temperature sensitivity of Kiry.aog IS due to sensitivity 10 U, 208

Sathyamoorthy et al., 2014, Environmental Modelling & Software
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Summary

 Atenolol and Naproxen are cometabolized by ammonia oxidizing
bacteria

» Atenolol (and other PhACs) observed to competatively inhibit ammonia
oxidation

» Degradation very likely results from fortuitous interactions with
available/expressed ammonia monooxygenase

« Cometabolism was modeled using a new approach - cometabolic
process based model (CPB)

* Model parameters are relatively insensitive to nitrification biokinetic

parameters - T is insensitive, k sensitive to maximum specific growth
rate

» CPB was developed to be integrated within the ASM framework, and
can be readily expanded to include mechanistic description of
degradation by heterotrophs.



