2014 NEWEA Collection Systems Specialty Conference

City of Milford, CT

Combats Odor & Corrosion with Pure Oxygen

Inken Mello, ECO₂
Jim Cooper, City of Milford

PRESENTATION OUTLINE

- 1. City of Milford Sewage System
- 2. Root Cause of H₂S Odor and Corrosion
- 3. The Solution: A Two-pronged Approach
 - 1. Force Main Optimization
 - 2. SuperOxygenation
- 4. Result: Elimination of H₂S

City of Milford Sewer System

Milford Sewer System

Plagued with Odors

- Odor Complaints from residents of adjacent condo complex
- Unsafe Levels of H₂S

With Odor comes Corrosion...

Milford Sewer System - Corrosion

East-West Interceptor

- 36" Ductile Iron Pipe was perforated
- Manholes were deteriorated
- 1 mile of sewer had to be replaced

West Avenue Pump Station

- Severe damage to concrete in wetwell
- Electrical & HVAC Equipment damaged beyond repair

Gulf Pond Pump Station & Force Main

- Dual 13,200ft force mains
- Detention Time: 2 7 hours
- Liquid Sulfide Levels in Wetwell: 0mg/L
- Liquid Sulfide Levels at FM Discharge: 3mg/L
- ORP went from 19mV to -109mV

ROOT CAUSE OF ODOR

Bacteria consumes BOD

Oxygen Source
(Order of Preference):

- 1. Oxygen (limited)
- 2. Nitrate (limited)
- 3. Sulfate (unlimited)

ROOT CAUSE OF ODOR

Under *Anaerobic* Conditions:

- Bacteria consumes BOD
- Converts Sulfate to Sulfide

$$SO_4^{2-} + BOD + No D.O.$$
 $\rightarrow H_2S$

H₂S Concentrations @ FM Discharge 🚾

H₂S Concentrations @ West Ave PS

ROOT CAUSE OF CORROSION

In Headspace:

- H₂S Flux to Pipe Wall
- Oxidation to Sulfuric Acid
- Acidic Condensate accumulates on pipe wall
- → CORROSION

$$H_2S + O_2 + Bacteria$$

 $\rightarrow H_2SO_4$

ODOR LEADS TO CORROSION!

At H2S concentrations of

20ppm in the headspace,

concrete will corrode at a rate of

1 inch in 5 years

ASCE Manual

CORROSION CONCERN

Severe hydrogen sulfide corrosion may reduce the 50 to 100-year life expectancy of infrastructure to less than ten years.

According to an EPA study

The Solution

- 1) Optimize Force Main Usage
 - To Reduce the Detention Time

- 2) Provide Oxygen To Keep Sewage Fresh
 - –Pure Oxygen SuperOxygenation System

Total Flow (MGD)	Force Main In Use	Remarks
0 to 2.0	20"	
2.0 to 5.0	20" or 24"	Alternate on 2 hr. cycle
5.0 to 7.0	24"	
Over 7.0	20" and 24"	Both Force Mains in Use

SuperOxygenation System

- Adds DissolvedOxygen to theWastewater
- Prevents AnaerobicConditions
- -Prevents the Formation of H₂S

ECO₂ Technology Overview

Unscreened Raw Wastewater

Force Main

Oxygenated Raw Water of 40-150mg/L

D.O. Levels

Typical Force Main Installation

System Components

SuperOxygenation Cone

Sidestream Pump

O₂ Flow Control

ECO₂ Cone Construction

Hollow Stainless Steel Cone

No mixers, baffles, venturis or injector nozzles, that can clog \rightarrow Robust and Reliable Operation!

No Moving Parts!

System Controls

OXYGEN SOURCE

LOX Tank

SYSTEM PERFORMANCE

Gulf Pond Force Main Discharge

3 MGD \cdot 1,000 lb O₂ / day

West Avenue PS (1 Mile Downstream) Eco.

3 MGD · 1,000 lb O₂ / day

Conclusions

Low Operating Cost

- Oxygen cost approx. \$0.06/lb
- Daily cost approx. \$50.00

Low Maintenance

- LOX Equipment maintained by supplier
- Sidestream pumps only moving part

Excellent Operational Results

Complete Elimination of H₂S

Questions?

Inken Mello, Sales Engineer (858) 272-7102 imello@eco2tech.com

We look forward to working with you!