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But That Isn’t The Whole Story
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Energy

Reduce (as much as possible)

Clean Water \i.

Reuse (as much as possible)

Nutrients

Recover (as much as possible)



Organic Carbon Has Numerous Uses
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Motivation for Considering WAS

Pretreatment

m Lower nitrogen limits —

longer sludge ages —
decreasing degradability of WAS
Increasing solids disposal costs
Increasing stabilization
requirements

e (i.e. Class A Biosolids)
Minimize solids production /
enhance digestion — delay costly
expansion (i.e. aerobic or
anaerobic digester volume)
Increase digester gas production
Supplemental carbon source




Goals of Sludge Pretreatment

m Floc disintegration

‘\g m Cell lysis

m Conversion of particulate organics

’\’gf\ " m Increase bioavailability

Qe/—ii m Increase hydrolysis rate




Where Can Sludge Pretreatment Provide

Benefits?
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Digester Gas Production Is Directly Related

to Volatile Solids Destruction
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Volatile Solids Reduction is a Function of

Digester Solids Residence Time
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WAS Pretreatment Mechanisms

m Increase rate and/or extent of degradation

e Low intensity processes — increase degradation rate

‘\\f e High intensity processes — increase degradation rate and extent
a
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Sludge Pretreatment Impacts on Digestion

m Why?
e |ncreased ultimate degradability or rate of
degradation of WAS

e |Increased volatile solids reduction

_ ;;,ﬁ e More digester gas produced

=3 e Increased energy availability



Potential Downstream Impacts

m Increased dewaterability of sludge

m Reduced polymer consumption in dewatering step

m Reduced water mass to downstream processes
e Reduces energy inputs to thermal process to
evaporate water from the sludge




Available Technologies
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OpenCel System

1. Main WAS line

. WAS input
Grinder pump
. OpenCEL unit
. WAS return

6. Control Unit
7. Cooling Water
3. 3-phase 480v
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OpenCel Theory

m Focused electrical pulse treatment
e Cyclic exposure to positive and negative charges
— & weakens the cell wall
6‘ e Eventually the cyclic forces cause cell rupture and
release of internal contents
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OpenCel Impacts

Before treatment
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Case Study #1:
Philadelphia Water Department

Southwest WPCP




Southwest WPCP




Southwest WPCP Current Operations

m Sludge processed from Southeast WPCP also
m Primary sludge thickened in-tank

m WAS thickened by DAF
N
N

Blended in tanks prior to digestion

Intermittent feed (~10 minutes) cycling through
i digesters at ~650 gpm

~ " = 12digesters

é,, .~ m Digested sludge sent to 3 party dewatering/drying
Xa — facility



Pilot Testing Goals

m Determine impact of

Primary and Waste Activated Sludges

OpenCel on digester gas
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Pilot Testing Configuration
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Pilot Testing Configuration
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Pilot Testing Container




OpenCel Unit Inside Container




So Let’s Get to the Performance...

m Startup has been completed and data is beginning to
be generated

m Some lessons learned:
e Sludge conductivity is critical
e Constant TWAS availability is critical

e Need tie-in upstream of feed pumps to provide
safety shutdown if TWAS not available



Soluble COD Results
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Volatile Solids Reduction
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Digester Gas Production
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The Future is Bright...

m The pilot test is well configured to provide meaningful
results:

e Good control v. experimental setup

e Extent of monitoring is excellent to provide proper
data

e Good communication between parties
e Dedication by all involved to make this a success




Case Study #2:
Henrico County, VA
Water Reclamation‘F
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Henrico County WRF




Carbon’s Role in Nitrogen Removal

m Typical nitrification-denitrification process requires
external (supplemental) carbon source to complete
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Pilot Testing Approach

m GBT-thickened WAS pretreated using OpenCel
m Lysed sludge added to initial anoxic zone to replace/
augment glycerin use

m Considerations:
e “Dirty” carbon source
e Additional ammonia loads
e Careful coordination during pilot to meet strict
effluent TN limits



Experimental Configuration
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Implications for Pilot Testing

m Assume yield is 0.09 mg ssCOD/mg TS

OpencCel Flow
(spm)

Percent of existing first anoxic COD demand that can be
replaced by OpenCel

20

39%

m Assume yield is 0.01 mg ssCOD/mg TS

OpenCel Flow Percent of existing first anoxic COD demand that can be
(gpm) replaced by OpencCel
20 4%




Conclusions




Conclusions and Observations

m Pilot testing is always critical

m Unforeseen issues are standard with pilot testing

m Bench scale and full scale operations can often vary

~ f ~ m Strong experimental setups are critical to determining
. B , .

iy true benefits
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m Cooperation between all parties greatly improves the
2 % potential for success
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