City of Nashua, New Hampshire Nashua WWTF Dewatering and Grit System Upgrades

Presented by: John Adie: Nashua WWTF Andy Morrill, PE: Wright-Pierce

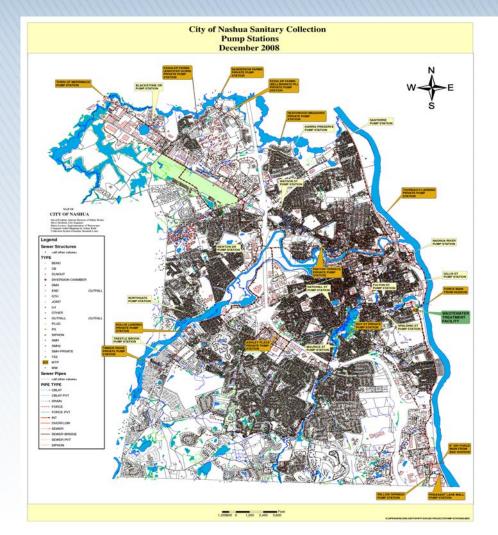
Engineering a Better Environment

NEWEA Annual Conference January 26, 2015

Presentation Overview

- Nashua WWTF Background
- Project Overview
- Dewatering System
- Grit System
- Secondary Digester
- Odor Control
- Project Challenges
- Recent Improvements

T'STOWN'


- Population
 - 1965 40,000
 - 2015 90,000
- Main WWTF
 - Average Daily Flow 12.5 MGD
 - Peak Hourly Flow 52 MGD
- Wet Weather Facility
 - Actiflo System
 - Activates 10-14 times per year
 - Peak Hourly Flow 60 MGD
- Effluent Disposal
 - Merrimack River

Collection System

- Total 420 miles
 - Combined 100 miles
 - Separate Sanitary 190 miles
 - Separate Storm 130 miles
- 13 Pump Stations
- CSO Structures
 - Nashua River 4
 - Merrimack River 4

Service Area

- Nashua, NH
- Hudson, NH
- Merrimack, NH
- Tyngsboro, MA



- 1959 Primary Plant Constructed
- 1974 Collection System and WWTF Expansion
- 1989 Secondary Treatment Upgrade
- 1998 Digester Complex
- 1999 Headworks Renovation
- 2009 Wet Weather Facility

Nashua WWTF Background Nashua WWTF - 1965

Nashua WWTF - 2002

- Project Cost
 - Total Construction Cost
 - Total Engineering Cost
 - Total Project Cost
- Project Schedule
 - Notice to Proceed
 2013
 - Substantial Completion 2015
 - Final Completion

\$5.8 M \$1.0 M \$6.8 M

June 18,

March 6,

April 5,

Solid Quantities - Basis of Design

	Raw (lb/ day)	Digested (Ib/day)	Digested (lb/hr)	Digested % Solids
Average	22,000	12,100	504	2.3
Maximum Month	31,500	17,300	721	2.9
Peak 7-Day	39,900	22,000	914	3.3

- Design Criteria
 - Operation 108 hrs/wk
- Sludge Loading Rate
 - Average
 - Max Month
 - Peak week
- Huber Q-800
 - Number of Units 3
 - Operating 2
 - Standby

784 lb/hr 1,122 lb/hr 1,421 lb/hr

1

Performance Requirements

	Sludge Type	Solids Loading (Ibs/hr)	Feed Conc. (% ODS)	Feed Rate (gpm)	VSS (%)	Max Polymer (lbs/dt)	Dewatere d Cake Conc. (% ODS)
1	Anaerobic Dig	600	2.4	50	58	25	30
2	Anaerobic Dig	900	2.4	75	58	25	27
3	Anaerobic Dig	600	2.4	50	63	25	24
4	Anaerobic Dig	900	2.4	75	63	25	22
5	Raw Pri/Sec	1050	4.0	52	63	20	22

Biosolids Disposal Cost Savings

	Cake Solids (%)	Annual Dry Solids (tons)	Annual Wet Solids (tons)	Biosolids Disposal (\$/wet ton)	Annual Cost (\$)	Annual Savings (\$)ª
2007-2009 Avg	21.5	2,052	9,544	\$49	\$467,665	
1% Better	22.5	2,052	9,120	\$49	\$446,880	\$20,785
2% Better	23.5	2,052	8,732	\$49	\$427,864	\$39,801
3% Better	24.5	2,052	8,376	\$49	\$410,400	\$57,265
4% Better	25.5	2,052	8,047	\$49	\$394,306	\$73,359
5% Better	26.5	2,052	7,743	\$49	\$379,426	\$88,239
6% Better	27.5	2,052	7,462	\$49	\$365,629	\$102,036
7% Better	28.5	2,052	7,200	\$49	\$352,800	\$114,865
8% Better	29.5	2,052	6,956	\$49	\$340,841	\$126,824
9% Better	30.5	2,052	6,728	\$49	\$329,666	\$138 <i>,</i> 465

Note: a. Savings are relative to the existing baseline conditions defined in the 2006-2007 average.

- Old Dewatering Equipment
 - Three Belt Filter Presses (1 Meter Pressure Zone)
 - unpleasant working atmosphere
 - Iabor intensive maintenance
 - Imited performance average cake solids 21.5%
 - end of useful life

- New Dewatering Equipment
 - Three Huber Technologies Q-800 Screw Presses
 - enclosed operation
 - Iow maintenance required
 - enhanced performance average cake solids up to 30%
 - stainless steel construction is "built to last"

- Dewatering Equipment
 - Sludge Dewatering Pumps

Old Plunger Pump

New Rotary Lobe Pump

- Dewatering Equipment
 - Conveyors

Old Belt Conveyors

New Shaftless Screw Conveyors

Grit System Old Grit Equipment

- Poor grit removal
 - constant speed blowers
 - high aeration rate
 - ↘ 388 cfm/tank = 10/cfm/lf
- Equipment failure common
 - troublesome sump
 - clogging of cyclone
 - batch operation
 - labor oversight

Grit System

- New Grit Equipment
 - New variable speed blowers
 - ▶ 38 190 cfm/tank
 - 1 5 cfm/lf
 - New grit chamber screws and pumps
 - eliminated sump
 - cleanouts
 - flushing connections
 - Two Huber grit washers
 - automated operation
 - no clogging
 - 95% organic removal

Secondary Digester

- no mixing
- non-organic material (rags, plastics & grit) build-up
- average solids content 2.4%

Secondary Digester

- New Secondary Digester Mixing Equipment
 - Rotamix 2 Vaughn Chopper Pumps & 4 Nozzles
 - complete tank mixing
 - non-organic material passed
 - average solids content 1.7%

Odor Control

- Old Odor Control System
 - Building Scrubber
 - recirculation pumps at the end of useful life
 - single speed axial fan
 - unbalanced air flow rates
 - Sludge Storage Tank Scrubbers
 - recirculation pumps at the end of useful life
 - fan improperly sized
 - non-ease of maintenance

Odor Control

- New Odor Control System
 - Building Scrubber
 - new recirculation pumps
 - new floor mounted, radial vane fan on VFD
 - air flows reduced
 - Sludge Storage Tank Scrubbers
 - new recirculation pumps
 - appropriate sized fan
 - new layout
 - ease of maintenance

Project Challenges

- Huber Screw Presses
 - Iron Oxide precipitate on screen
 - Water Treatment Plant is the source of iron
 - iron re-solubilizes in the primary digester
 - dewatering process creates ideal conditions for precipitation (pH of 7 to 9)
 - Solutions
 - mixing in the secondary digester
 - mixing in the sludge storage tanks
 - routine mild acid cleaning of screen

Project Challenges

- Huber Screw Press / Sludge Feed Pumps
 - Premature wearing of brushes / wear plates
 - caused by high grit concentration in the sludge
 - ↘ City of Nashua is a combined system
 - Solution State State
 - ↘ Long term poor performance overall

Project Challenges

- Huber Screw Press / Sludge Feed Pumps
 - Solutions
 - new grit facility is online
 - accumulated grit purged from secondary digester
 - secondary digester mixing online
 - sludge storage tank mixing online

 Primary "Egg-Shaped" Digester Mixer Replacement

- Gravity Belt Thickener Polymer Activation System
- Dewatering Polymer Activation System

 Sludge Storage Tanks Large Bubble Mixing System

 Sludge Truck Bay Extension with New Conveyors and Automated Controls

THANK YOU!

- City of Nashua, NH
 - Lisa Fauteux Public Works Director
 - Steve Dookran, PE City Engineer
 - Bill Keating, PE Wastewater City Engineer
 - Dave Simmons WWTF Superintendent
 - John Adie WWTF Operations Manager
 - WWTF Operation / Maintenance Staff
- T-Buck Construction
 - Bruce Kenney Project Superintendent
- Electrical Installation, Inc.
 - Chuck Fritz Project Electrical Contractor

WRIGHT-PIERCE Engineering a Better Environment