# BUILDING A WORLD OF DIFFERENCE

## SAVING ENERGY AND SPACE WITH TURBO BLOWERS – LESSONS FROM TWO PROJECTS

JULIA GASS, PE BLACK & VEATCH





## OUTLINE

- 1. Turbo Blower Basics
- 2. Technology Selection
- 3. Performance Verification
- 4. West Haven, CT
- 5. UOSA
- 6. Performance Contracting
- 7. Commissioning



#### **THANK YOU TO**

- Mario Francucci, PE Black & Veatch
- Peter Thomson, PE Black & Veatch
- Mike Hanna, PE Black & Veatch

# TURBO BLOWER BASICS

**JULIA GASS** 



#### TWO "FIRSTS" IN TURBO BLOWERS

- UOSA, Centreville, VA
  - Largest Turbo units installed in North America to date!

- West Haven, CT
  - One of the first Turbo installations in New England!





#### **SCOPE OF INSTALLATIONS**

#### UOSA

 Two 600 hp "dual core" units started up in 2013

#### West Haven

 Five 200 hp turbo packages started up in 2011-2012

#### HIGH SPEED GEARLESS TURBO BLOWERS





#### WHY THESE BLOWERS WERE SELECTED

- Minimal mechanical maintenance
- No lubricant required
- Turndown to about 50% of rated capacity
- Small footprint
- Dual core arrangement for UOSA
- Experience & installation list in comparison to other turbo vendors
- Lowest life cycle costs

## KEYS TO SUCCESSFUL TURBO BLOWER DESIGN

- Specify experienced turbo vendors
- Specify better quality inlet air filters
- Ensure steepness to performance curves for stable performance at turned down conditions
- Require single source responsibility for system controls whenever possible

## TECHNOLOGY SELECTION BY LIFE CYCLE COST EVALUATION

**JULIA GASS** 

#### **TECHNOLOGY SELECTION PROCESS**

- Always perform a life cycle cost evaluation.
  - Compares capital costs and operating costs of several blower technologies
  - Considers operation through a typical year and through the useful life of the blowers
  - Includes power cost and interest rate for weighted operating points
  - Determines most cost effective technology
  - Either specifies "not to exceed" power numbers or requires vendor to write in power numbers on bid day



#### **TECHNOLOGY SELECTION PROCESS**

- Turbo blowers selected for both West Haven & UOSA
- One key to success: length of vendor installation list
- APG-Neuros selected for both projects due to installation list, footprint, and energy efficiency

## PERFORMANCE VERIFICATION

**JULIA GASS** 



#### PERFORMANCE VERIFICATION

- Establish guarantee points and weighting factors
- Establish power penalties
- Shop witness test the machines to verify compliance with guarantees
  - Limit operating points to a reasonable number







#### PERFORMANCE VERIFICATION-GUARANTEE TABLE

| Table from Original Specification |               |           |                                         |                                  |                      |                                                               |                                                   |                      |                                       |
|-----------------------------------|---------------|-----------|-----------------------------------------|----------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------|---------------------------------------|
|                                   | Α             | В         | С                                       | D                                | E                    | F (C ÷ E)                                                     | G                                                 | Н                    | I (G x H)                             |
|                                   | Tem<br>p (°F) | RH<br>(%) | Total Inlet<br>Flow (ICFM) <sup>1</sup> | Blower Discharge Pressure (psig) | # Cores<br>Operating | Inlet Flow<br>per<br>Core <sup>3</sup><br>(ICFM) <sup>1</sup> | Guaranteed<br>Power per<br>Core <sup>2</sup> (kW) | Weight<br>Factor (%) | Factored<br>Power<br>per Core<br>(kW) |
| 1                                 | 100           | 85        | 26,520                                  | 8.5                              | 4                    | 6,630                                                         |                                                   | 20                   |                                       |
| 2                                 | 60            | 30        | 25,210                                  | 8.5                              | 4                    | 6,303                                                         |                                                   | 10                   |                                       |
| 3                                 | 100           | 85        | 25,370                                  | 8.5                              | 4                    | 6,343                                                         |                                                   | 15                   |                                       |
| 4                                 | 60            | 30        | 22,370                                  | 8.5                              | 4                    | 5,593                                                         |                                                   | 25                   |                                       |
| 5                                 | 100           | 85        | 20,760                                  | 8.5                              | 3                    | 6,920                                                         |                                                   | 5                    |                                       |
| 6                                 | 60            | 30        | 18,300                                  | 8.5                              | 3                    | 6,100                                                         |                                                   | 10                   |                                       |
| 7                                 | 0             | 10        | 16,450                                  | 8.5                              | 3                    | 5,483                                                         |                                                   | 10                   |                                       |
| 8                                 | 0             | 10        | 12,800                                  | 8.5                              | 2                    | 6,400                                                         |                                                   | 5                    |                                       |
|                                   |               |           |                                         |                                  |                      |                                                               |                                                   | TOTAL                |                                       |

#### 8 guarantee points – too many!!

#### PERFORMANCE VERIFICATION

#### ASME Test Code PTC10 not ideal for turbo blowers

- Intended to measure shaft power
- Intended for constant speed machines
- Does not capture ancillary losses

#### ASME PTC 13 is coming this Fall!!

- Package test code to measure wire power
- Not yet issued

#### For West Haven and UOSA

- Tested core per PTC10
- Tested again in package to capture ancillary losses

## WEST HAVEN, CT

**JULIA GASS** 



### EARLY TURBO MARKET – CLAIMS & COUNTERCLAIMS ABOUT EFFICIENCY



 Since energy savings not proven when technology was new, many early installations driven by small footprint

#### WEST HAVEN-LAND LOCKED BLOWER BLDG



#### WEST HAVEN-LAND LOCKED BLOWER BLDG



#### WEST HAVEN-LAND LOCKED BLOWER BLDG



#### **WEST HAVEN SYNOPSIS**

- Plant upgrade and expansion to tertiary treatment and full nitrification/denitrification
- Energy savings of 10% despite plant upgrade!

# UPPER OCCOQUAN SERVICE AUTHORITY (UOSA)

**JULIA GASS** 



#### **UOSA PLANT BACKGROUND**

- Plant capacity: 54 mgd
- Daily Flows: 30 to 35 mgd
- Original blowers
  - Constant speed multistage centrifugal
  - 6 @ 350 hp, 2 @ 800 hp, 2 @ 1000 hp
  - Total available capacity: 96,200 scfm @ 7.5 psig
  - Ave air flow requirement for past 5 years: 19,530 scfm

## POWER CONSUMPTION – ORIGINAL MULTISTAGE BLOWERS

 23 scfm/kW theoretically. Actual averaged 20.4 scfm/kW due to blower starting difficulties, operating ranges, and oversizing



## PLANT BACKGROUND – UOSA HISTORICAL AIR FLOW REQUIREMENTS

One year of daily & hourly data from DCS system was analyzed



#### HISTORICAL AIR FLOW REQUIREMENTS

• Conclusion: 10,000 – 25,000 scfm average daily range

2009 Frequency Histogram



## COMPARISON OF CURRENT AND FUTURE AERATION DEMANDS

Projected growth: 1.6 to 2.5% annually



## COMPARISON OF CURRENT AND FUTURE AERATION DEMANDS

#### **Frequency Histogram**



## TOTAL INSTALLED NEW BLOWER CAPACITY

- 25,000 scfm summer capacity with future unit planned
- Maximizes efficiency gains while minimizing capital expenditure

#### LAYOUT FOR BLOWER REPLACEMENT



#### **COMPARISON OF BLOWER EFFICIENCIES**



## YEARLY POWER CONSUMPTION COMPARISON

| Year | Air Flow, scfm | Power, kW | scfm/kW |
|------|----------------|-----------|---------|
| 2010 | 16,073         | 888       | 18.1    |
| 2011 | 21,148         | 1066      | 19.8    |
| 2012 | 22,726         | 1104      | 20.6    |
| 2013 | 18,344         | 944       | 19.5    |
| 2014 | 16,945         | 606       | 28.0    |

- •19.5 scfm/kW for multistage vs 28 scfm/kW for turbos.
- •Gain of 30%! Resulting annual savings of \$141,000 with power cost of only \$0.0529/kWh

#### **SIMPLE PAYBACK**

 Simple payback calculation results in a 14.1 year payback but it should be noted existing blowers were nearing the end of their useful life

#### **BASELOADING STRATEGIES**

- Baseloading multistage generally thought to be better due to poorer turndown and efficiency decline at low flows.
- 2.3% difference between best and worst strategies.
   Neither is ideal across the range.



## PERFORMANCE CONTRACTING

**JULIA GASS** 



#### PROJECT DELIVERY METHOD

#### UOSA

Energy Performance Contracting

#### West Haven

 Connecticut DEP granted sole source request after thorough evaluation





#### PERFORMANCE CONTRACTING

UOSA chose performance contracting as an alternative to conventional project delivery



#### PERFORMANCE CONTRACTING

#### Design/Bid/Build



#### **Energy Savings Performance Contracting**



## COMMISSIONING

**JULIA GASS** 



## COMMISSIONING – CHECKING OPERATION OF EXISTING AND NEW UNITS IN PARALLEL



#### **CONCLUSIONS**

- 1. New technology blowers can be small footprint & efficient.
- 2. Controllability improved at both plants.
- 3. Performance verification crucial to success.
- 4. Consider system efficiency instead of unit efficiency.

#### **CONCLUSIONS**

- 5. Field data shows that efficiency improvement is about 30 percent for both plants and is \$141,000 annually for UOSA!
- 6. Consider performance contracting for energy savings, financing needed improvements, and accelerated delivery.
- 7. Further gains in energy savings possible with system optimization.



