Innovative Technology: Development of the Self-cleaning Wet-well

Robert Domkowski
Engineering Consultant
Innovative Technology: Self-cleaning wetwell

Overview

- Over the years, little investigative work has been attempted in advancing modern wet well designs
- The result: end-users have continued to endure poorly operating sumps
Innovative Technology: Self-cleaning wetwell

Project introduction:

• Summary of an investigation into the optimum shape and performance of circular sumps with submersible solids-handling pumps in sewage applications

• Providing an in-depth look at the ability of circular sumps to deal with solids normally found in domestic sewage
Innovative Technology: Self-cleaning wetwell

Project background:
• Simple circular, flat-bottomed wet wells have been employed for decades
• End-users have suffered with pump sumps that became fouled with trash, sludge and settled solids
• Owners routinely spend operating funds cleaning and maintaining wastewater pumps and wet wells
Project objective:

- Evaluate how effectively solids can be removed from wet-wells by pumps in two different sumps

 (a) A standard 5’-4” dia. flat-bottom circular wet-well
 (b) A wet-well having the geometry of the prototype typical IT station
 (c) The effectiveness of a sump mixing device was also tested in both sump examples.
Innovative Technology: Self-cleaning wetwell

Driving force behind laboratory investigation:

• Fouled wet wells
• Sludge bank deposits
• Foul odor generation
• Choking of pumps
• Need for frequent station cleaning
Innovative Technology: Self-cleaning wetwell

A view of the basic conventional pump sump
Innovative Technology: Self-cleaning wetwell

Initial investigation:

Solids-handling pumps w/ 4” dia. suction inlet

• Test clearance dimensions between two pumps while in simultaneous operation
 - Pump clearances of 36-in down to 0-in were examined
 - No noticeable change in pump performance was measured
Innovative Technology: Self-cleaning wetwell

Initial investigation:

Solids-handling pumps w/ 4” dia. suction inlet

- Test various pump inlet-to-floor clearance dimensions
 - Pump performance was measured as floor clearance was varied from 16-in through 1-in.
 - Floor clearance ratio (Clearance / Inlet dia.) of >= 0.4 delivered unaffected performance (>1.6” clearance)
 - For solids-handling pumps a 3” to 4” clearance is used
Innovative Technology: Self-cleaning wetwell

The area of influence: 2-3 x Pump inlet diameter
Innovative Technology: Self-cleaning wetwell

Modification 1:

Place one sloping wall, downstream of pumps

Result:
Power consumption increased 5% due to pre-swirl rotation
Innovative Technology: Self-cleaning wetwell

Modification 2:
Two sloping walls, one downstream, one upstream from pump

Result:
Power consumption increased 10% due to pre-swirl rotation
Innovative Technology: Self-cleaning wetwell

Modification 3:

Four vertical walls surround pump

Result:
Slight decrease in power consumption, higher $n_{hyd}\%$; no rotation around pump
Innovative Technology: Self-cleaning wetwell

- **Cantilever type**
- **Submersible type**
Innovative Technology: Self-cleaning wetwell

Cantilever type

Submersible type
Adapting circular sumps to sewage solids

Various densities of solids enter wet wells:

• Floating solids form surface blankets
• Sinking solids accumulate on sump floor in stagnant zones

• Solids can be removed from station if they come close enough to the influence of the pump intake
• The influence of the pump intake stretches only 2-3 inlet diameters for both floating and sinking solids
Adapting circular sumps to sewage solids
Development test #1 – Floating items

• Two wet well types are chosen for comparison
 - Conventional wet-well with 5’-4” diameter
 - TOP 100 wet-well

• Place 8 # of 2 types of plastic beads in each wet-well
 - Measure the mass of floating beads pumped out of a 5’-4” dia. sump and a TOP 100 sump
 - Fill each sump 12 x with 200 gal and empty the sump
 - Use pump-off level at the bottom of the volute

• Compare results from the two sumps
Adapting circular sumps to sewage solids

Bar graph showing dry mass (lbs.) comparisons:
- TOP 100:
 - PS: 90%
 - PE: 75%
- Conventional 5'-4":
 - PS: 23%
 - PE: 25%
Adapting circular sumps to sewage solids
Developmental test #2 – Sanitary items

• Two wet-well situations are chosen for comparison
 - TOP 100 wet-well
 - TOP 100 wet-well along with sump mixing device

• 200 gallons of water were introduced each cycle
 - Sump was filled / emptied in 12 cycles
 - Compare results of the tests
Adapting circular sumps to sewage solids

TOP sump, pumps w/o sump mixing device

<table>
<thead>
<tr>
<th>Items</th>
<th>Initial</th>
<th>6 Cycles</th>
<th>12 Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampons</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sm rags</td>
<td>5</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Lg rags</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Condoms</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adapting circular sumps to sewage solids

TOP sump, pumps with sump mixing device

<table>
<thead>
<tr>
<th>Items</th>
<th>Initial</th>
<th>6 Cycles</th>
<th>12 Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tampons</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sm rags</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lg rags</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Condoms</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Adapting circular sumps to sewage solids
Developmental test #3 – Sand / grit settling solids

• Two wet wells are chosen and inter-connected
 - Conventional 5’-4” diameter wet well
 - TOP 100 wet well

• 110 pounds of sand and floating plastics are placed into each wet-well (220 total pounds)
 - The system is filled with 200 gallons of water
 - Each wet well is emptied back into the other a total of 10 times each
Adapting circular sumps to sewage solids

5’-4” dia. wet-well

TOP 100 wet-well

10 x
Adapting circular sumps to sewage solids

Conventional wet-well

207 # of the sand remained in the conventional wet well
Adapting circular sumps to sewage solids

TOP 100 wet well

Just 3 # of sand remained in the TOP 100 wet well
Adapting circular sumps to sewage solids

- Conventional 5'-4" TOP 100 Sand: 98.6%
- TOP 100 Sand: 1.4%
Innovative Technology: Self-cleaning wetwell

Program Conclusions 1

• TOP sump design proven to be more effective in transporting all types of tested solids than the conventional sump
• Difference was greatest for settling and floating solids
• Sump bottom was the most important characteristic to affect transport
• Pump stop level in also an important factor, lower levels provide greater floating solids transport
Innovative Technology: Self-cleaning wetwell

Program Conclusions 2

• Repeated pumping cycles at lower pump-off levels proved most effective
• Sump mixing device was effective in enhancing the transport of settling solids (sand, grit and sludge), especially in the conventional wet-well
• TOP sump proved even more effective in handling solids than the conventional wet-well equipped with a sump mixing device
Innovative Technology: Self-cleaning wetwell

Self-cleaning sumps: Installation types

• Retrofit applications
• Pre-engineered fiberglass pump stations
• Pre-engineered concrete pump stations
Innovative Technology: Self-cleaning wetwell

TOPS utilization
Innovative Technology: Self-cleaning wetwell

Retrofit application
Innovative Technology: Self-cleaning wetwell

Upgrade an existing circular pump station

1. Remove station mechanicals.
2. Hose-clean and vacuum clean station interior
3. Lay leveling bed of fairly dry concrete
Innovative Technology: Self-cleaning wetwell

4. Lower TOP station insert onto stiff concrete base
Innovative Technology: Self-cleaning wetwell

5. Seat and level basin.

6. Restrained basin

7. Fill void area with grout.
 (~ 3 yds)
Innovative Technology: Self-cleaning wetwell

8. Finish with grout at 45° to 60° to PS side-wall
Innovative Technology: Self-cleaning wetwell

Completed station

9. Re-install piping and mechanical equipment
Innovative Technology: Self-cleaning wetwell

Plan view: Typical completed self-cleaning lift station retrofit
Innovative Technology: Self-cleaning wetwell

Before

Completed Retrofit
Innovative Technology: Self-cleaning wet well

Self-Cleaning
Current new construction, utilization methods
Innovative Technology: Self-cleaning wetwell

Fiberglass pre-engineered pump station
Innovative Technology: Self-cleaning wetwell

Concrete pre-engineered pump station
Conclusions 1

- The IT sump design has proven to be far more effective in transporting all types of solids and rags than the traditional circular sump.
- The IT sump exhibited the greatest sump improvement: removal of floating type and settling type solids.
- Sump diameter and bottom configuration are the characteristics that most affect the transport of solids.
Innovative Technology: Self-cleaning wetwell

Conclusions 2

• Pump off levels are an important factor in maintaining a clean wet-well
• The lower the sump level, the greater the amount of solids that are transported
• Repeated cycles of low pump-off levels proved to be most effective
Innovative Technology: Self-cleaning wetwell

Conclusions 3

• A sump mixing device was very effective in enhancing the transport of settling solids and the prevention of grease build-up in the station

• The benefits of sump mixing were greatest in the traditional large diameter, flat bottom design sump
Innovative Technology: Self-cleaning wetwell

Conclusions 4

• The IT sump w/o sump mixing device was significantly more effective at handling solids than the traditional sump

• The IT sump was even more effective when the mixing device was employed
Innovative Technology: Self-cleaning wetwell

Sump design recommendations for common circular concrete wet well
Innovative Technology: Self-cleaning wetwell

Sump design recommendations for common circular concrete wet well

Plan view
Innovative Technology: Self-cleaning wetwell

Design recommendations
For pump stations with midrange centrifugal wastewater pumps
Innovative Technology: Self-cleaning wetwell

Question and Answer Period
Innovative Technology: Development of the Self-cleaning Wet-well

Robert Domkowski
Engineering Consultant