

Safeguarding Vital Wastewater Infrastructure: A Strategic Risk and Triple-Bottom Line Adaptation Framework

NEWEA January 28, 2015

Anni Luck, PE Hazen and Sawyer

ACKNOWLEDGMENTS

NYCDEP:

Pinar Balci Alan Cohn Anthony Maracic Ken Moriarty

Hazen and Sawyer: Sandeep Mehotra Tim Groninger Laura Bendernagel

CH2M Hill: Vin Rubino Adam Hosking Gary Ostroff

Climate Change Planning

Since 2007, NYCDEP has been proactively investigating the impacts of climate change on its infrastructure...

Goal of the Study

Provide a roadmap to

enhance the flood resiliency of DEP wastewater infrastructure

considering existing vulnerabilities, cost, and level of protection

- Give a sense of the options and level of effort
- Support funding applications
- Provide preliminary analysis for future design projects

Study Framework

Phase 1: Climate Analysis

Establish the Design Flood Elevation

Design Flood Elevation =	Current Surge + Projections	Future Sea Level Rise
We chose 100 year ABFE + 30" Sea Level Rise (from NPCC) as a conservative level	≻FEMA	≻ IPCC
	≻USGS	≻ NPCC
	State and Municipal	Local research institutions

NPCC Seal Level Rise Projections:

Sea Level Rise Baseline (2000 – 2004)	Low-estimate (10 th percentile)	Middle range (25 th to 75 th percentile)	High-estimate (90 th percentile)
2020s	+ 2 in	+ 4 in to 8 in	+ 10 in
2050s	+ 8 in	+ 11 in to 21 in	+ 30 in
2080s	+ 13 in	+ 18 in to 39 in	+ 58 in
2100	+ 15 in	+ 22 in to 50 in	+ 75 in

WWTP Assigned Flood Elevations

	Sandy	FEMA 100-yr ABFE + 30 inches SLR			
	NAVD88 (ft)	NAVD88 (ft)	Local Datum (ft)		
26 th Ward	12.6	13.5	12.9 Brooklyn-Sewer		
Bowery Bay	11.6	15.5	13.9	Queens	
Coney Island	10.1	15.5	14.0	14.0 Brooklyn-Highway	
Hunts Point	10.2	17.5	16.0	Bronx	
Jamaica	None	13.5	11.9	Queens	
Newtown Creek	10.0	13.5	12.0	Brooklyn-Highway	
North River	9.7	12.5	10.8	Manhattan	
Port Richmond	12.1	14.5	12.4	Staten Island	
Oakwood Beach	13.1	16.5	14.4	Staten Island	
Owls Head	13.5	14.5	13.0	Brooklyn-Highway	
Red Hook	11.7	14.5	13.0	Brooklyn-Highway	
Rockaway	11.4	14.5	12.9	Queens	
Tallman Island	10.1	15.5	13.9	Queens	
Wards Island	10.7	17.5	15.8	Manhattan	

Phase 2: Vulnerability Analysis

- Establish logical breakdown of facilities
- FEMA floodplain and terrain analysis
- Staff interviews and facility walkthroughs documenting pathways and assets
- Drawings to compare threshold/asset elevations with flood elevations
- Impacts and criticalities

Vulnerability Results

All 14 wastewater treatment plants and 60% of pumping stations are at risk.

Vulnerability Costs

Impacts Beaches? WWTP	Locations At Risk w/ Primary	TOTAL		
		Asset Quantity	No Action Cost	
Y	Hunts Point	19	3,804	\$201.4 M
Y	Coney Island	6	1,204	\$84.9 M
Y	Rockaway	8	689	\$49.3 M
Y	26th Ward	5	1,244	\$82.4 M
Y	Oakwood Beach	5	353	\$21.0 M
Y	Jamaica	0	1	\$1.7 M
	Tier 1 TOTAL	43	7,295	\$440.7 M
Ν	Bowery Bay	15	1,215	\$112.6 M
Ν	North River	1	2,251	\$94.1 M
Ν	Red Hook	7	1,281	\$67.4 M
Ν	Owls Head	9	762	\$48.4 M
Ν	Port Richmond	5	536	\$54.8 M
Ν	Tallman Island	5	773	\$45.2 M
Ν	Newtown Creek	5	382	\$28.8 M
Ν	Wards Island	1	46	\$8.7 M
	14 Plant TOTAL	91	14,541	\$901 M

Storm Surge Guidance Resources

Compilation of Critical Flood Pathways

h de

11

6'

W. Effluent Water Building flooded

Storm Surge Guidance:

Guidance:

Storm surge over bulkhead along roadways

Storm Surge Guidance:

Hunts Point WWTP

15.07 14.5

12.5

10.01

7.0

Stored equipment flooded along the bulkhead near the final settling tanks

Storm Surge Guidance Sheets

Plant-specific emergency response guidance for buildings and equipment according to surge heights.

Phase 3: Adaptation Analysis

Assign Feasibility & Cost for each Strategy/Location

Others: open process tanks, outfalls, storm drains and plant drains, wet well, temporary building material, and interconnected buildings

Develop Adaptation Selection Criteria

≻ Keep in mind:

- Typically, the more protection, the higher the cost
- Assess the level of risk acceptable for each level of criticality

For Example:

High Criticality:

- Flood-proof or elevate critical assets where possible
- If not all critical assets can be protected or there is more than 15% risk remaining across the location, provide a building level strategy

Moderate Criticality:

• Provide the most cost-effective mix of strategies (lowest CBR)

Low Criticality:

• Provide the most cost-effective mix of strategies, however if none of the strategies have a CBR lower than 1, opt to Do Nothing

Develop Adaptation Selection Criteria

≻ Keep in mind:

- Typically, the more protection, the higher the cost
- Assess the level of risk acceptable for each level of criticality

For Example:

How do we calculate these values?

High Criticality:

- Flood-proof or elevate critical assets where possible
- If not all critical assets can be protected or there is more than **15% risk remaining** across the location, provide a building level strategy

Moderate Criticality:

Provide the most cost-effective mix of strategies (lowest CBR)

Low Criticality:

• Provide the most cost-effective mix of strategies, however if none of the strategies have a **CBR** lower than 1, opt to Do Nothing

- Like insurance companies, we use risk calculations. Although we cannot predict the future, we can estimate what we **expect to pay out** based on 3 factors:
 - 1. Probability of flooding
 - 2. Likelihood that the strategy will withstand a flood
 - 3. Potential damage
- Risk Avoided =

This risk is incurred every year, so bring this value (A) to present value:

$$PV = A * \frac{(1+i)^n - 1}{i * (1+i)^n}$$
 n = 50 years
i = 0.03

2 Annual Risk with Strategy Implementation

= No Action Damage Cost x Annual Probability of Flood Event X St dt Event X

Probability of X Strategy Failure during Flood Event

Strategy	Probability of Failure	Explanation of Probability of Failure
No-Action	100%	
Building-Level Strategies		
Sandbagging	15%	Human element, may overtop
Seal Building	10%	Difficult to detect all building penetrations
Install Temporary Barrier	10%	Minor leakage through stop log access, difficult to detect all building penetrations
Construct Static Barrier	5%	Minor leakage through stop log access, Blowout
Asset-Level Strategies		
Floodproof Equipment	5%	May exceed rated pressure, Seals weaken over time
Elevate Equipment	< 1%	If elevated to 100-yr flood height, only risk from larger storms

Risk Avoided

= PV of Risk without Strategy – PV of Risk with Strategy

Risk Remaining

= PV of Risk with Strategy / PV of Risk without Strategy

Review Selections at Plant and Planning Level

Remember to not get lost in the weeds.

- Internal pathways and inter-connections between buildings
- Power system and plant as a whole
- Programmatic changes, safe spaces, access
- Adaptive management

Leverage existing and planned capital projects

Account for long-term change

- > Are the recommendations adaptable for future conditions?
- What type of continued research/actions are needed in the future to ensure continued resilience?

Recommended Adaptation Strategy Allocations

Summary of Costs

Investing **\$315 Million** in strategic fortification can safeguard **\$1.1 Billion** of vital infrastructure and save the city **\$2.5 Billion** in emergency response costs over the next 50 years.

Prioritization Approach

Prioritization considered against seven metrics:

- 1. Historical Frequency of Flooding
- 2. Historical Loss of Power
- PS Tied in with Other PS (<u>Daisy Chained or</u> <u>Grouped</u>)
- 4. Tributary Area <u>Population</u> Impacted
- 5. Number of Critical Facilities Impacted
- 6. <u>Beaches</u> Impacted
- 7. Included in DEP's 10 year Capital Plan

Operational **Metrics Vulnerability Metrics** Other

Metrics

Questions?

Anni Luck, PE, PMP, ENV SP Hazen and Sawyer aluck@hazenandsawyer.com

Reports Are Available Online