Fine Tuning Your BNR Removal System without the Use of an External Carbon Source

Presentation by:

John Gallegos

Authors:
John Gallegos

Date: January 28, 2015

Presentation Overview

- SRTTP Background
- Process Adjustments and Monitoring
- Operational Performance and Results
- Lessons Learned
- Questions

SRTTP BACKGROUND

Southern Regional Tertiary Treatment Plant (SRTTP)

- Sequencing Batch Reactor (SBR) and tertiary filtration treatment facility serving Marine Corps Base Camp Pendleton, CA
- Constructed in 2006
- 5 MGD capacity
- Plant expansion in 2013 increased capacity to 7.5
 MGD

SRTTP Site Layout (5 MGD)

SRTTP Operational Challenges

- Deal with varying influent wastewater quality
- Maximize reclaimed water delivery
- Meet stringent reclaim water requirements

Constituent	Reclaimed Water (Max Day)	Ocean Outfall (Avg Mth/Max Day)
BOD_5 (mg/L)	10	30/45
TSS (mg/L)	10	30/45
TN (mg/L)	5	

SRTTP Operation Challenges Cont'd

- Master Reclamation Permit (MRP) changed reclaimed water quality requirements
- 2004 plant design basis for 5 mg/L <u>average monthly</u> TN
- 2009 Master Reclamation Permit issued as 5 mg/L <u>daily maximum TN limit plus</u> many other WQ limitations (e.g., boron, chloride, manganese, TDS, etc.)
 - TN limit will be lowered to 4.1 mg/L daily max in 2014

Excerpt from Master Reclamation Permit (MRP)

- The recycled water discharged from SRTTP to the Irrigation Areas shall not contain TDS in excess of 1,200 mg/L as a 12-month average² or 1,300 mg/L as a daily maximum. From March 12, 2014 on, recycled water discharged from SRTTP to the Front Gate/Recreation Fields shall not contain TDS in excess of 800 mg/L as a daily maximum.
- 6. The recycled water discharged from SRTTP to the Irrigation Areas shall not contain total nitrogen (as N) in excess of 5.0 mg/L as a daily maximum. From March 12, 2014 on, recycled water discharged from SRTTP to the Front Gate/Recreation Fields shall not contain total nitrogen (as N) in excess of 4.1 mg/L as a daily maximum.

SRTTP Operational Challenges Cont'd

- Impact of 5 mg/L TN instantaneous maximum
 - Reduced reclamation potential
 - Continuous online monitoring shuts down RWPS if ammonia + nitrate > 3 mg-N/L
 - Increased total nitrogen removal
 - Requires longer anoxic cycle for increased denitrification
 - Aerobic cycle time is reduced, oxygen demand increases, blower flow increases
 - Potential for filamentous growth increases
 - Additional basin put in service, operational costs increase (electricity, maintenance, chemicals, lab testing)
 - Reduced operational flexibility

SBR Design Criteria and Current Operations

Parameter	2004 Design Criteria	Current Operations	2011 Design Criteria
Average influent flow (MGD)	5	2.1	7.5
Operating SBR basins	4	3	6
Total Cycle Time (min)	288	288	288
Aerated time per cycle (min)	124 (43%)	70 (24%)	88 (31%)
Anoxic time per cycle (min)	65 (23%)	103 (35%)	104 (36%)
Cycles per day per basin	5	5	5
MLSS @ AWL (mg/L)	4,700	2,400	4,700

Process Control Adjustment

- Analyze operational and laboratory data weekly (sent to process control team prior to weekly phone in meeting)
- Conduct weekly process control meetings with key CDM Smith staff
 - Plant Manager
 - Senior Operator
 - Project Manager
 - Process Control Engineers
 - Key Process Control Operators

Process Monitoring

- Detailed process monitoring and operational adjustments made to meet the new, more stringent, TN limit of 5 mg/L max day
- Online instrumentation and control
 - DO monitoring in SBRs to fine-tune aeration control
 - Ammonia and nitrate monitors in SBRs
 - Ammonia and nitrate monitors on disk filter effluent
 - Set point of 3 mg/L ammonia + nitrate for reclaiming
 - Otherwise, effluent to ocean discharge

SBR Cycle Adjustments

- 272 minutes per cycle (5 cycles per day)
- No supplemental carbon

<u>Nitrification:</u> ammonia → nitrate (needs air) <u>Denitrification:</u> nitrate → nitrogen gas (no air) TN = NH3 + NO3/NO2+ Organic Nitrogen
TKN = NH3 + Organic Nitrogen

SBR Cycles – 3 Basin Operation Red box indicates which basin is being filled React (air on) Mix/Fill React/Fill SBR#1 React (air off) Settle **Decant** (air off) (air on) React (air on) Mix/Fill React/Fill SBR#2 Settle Decant React (air off) (air off) (air on) Settle React (air on) Mix/Fill React/Fill SBR#3 React (air off) Settle Decant (air off) (air on)

Optimal DO Profile

Actual SBR DO Profile – May 2, 2011

SBR Trend 1/21/15

Filter Effluent Ammonia & Nitrate – June 7, 2011

Process optimization

- Operators noted "dead" zones in SBR during aeration stage.
 - Possible poor DO readings
- DO profile of the basin
 - > DO probe relocated to a more optimum location
- This lead to the reduction of air and carry over of DO during denitrification stage
 - Overall reduction of nitrates by 1.5 mg/L

2014 Average SBR Operating Conditions

- Influent flow
 - Design flow = 5 MGD (average), 15 MGD (peak)
 - Current flow = 2.1 MGD
- Influent Concentrations
 - BOD = 202 mg/L, TSS = 189 mg/L
 - TKN = 53 mg/L, NH₃ = 37 mg/L, NO₃ = 0.1 mg/L
- Reclaimed Concentrations
 - BOD = 3 mg/L, TSS = 3 mg/L
 - TN = 1.5 mg/L, TKN = 0.5 mg/L, NH₃ = 0.05 mg/L, NO₃ = 1.0 mg/L
- Aerobic SRT = 10 days (all SBR's)
- MLSS = 2000 mg/L (all SBR's)
- SVI = 156 (all SBR's)

Oceanside Outfall TN 3/12 thru 2/13

Oceanside Outfall TN 1/13 thru 12/15

Reclaimed Water TN 2/12 thru 1/13

Reclaimed Water TN 1/13 Thru 1/15

LESSONS LEARNED

Process Control Lessons Learned

- Factors contributing to meeting 5 mg/L instantaneous total nitrogen limit
 - Detailed review of existing plant data
 - Review placement of in process analyzers
 - Operational adjustments
 - One adjustment at a time
 - Typical 'rule of thumb' that each adjustment is less than 10% of previous number
 - Wait after each adjustment to observe effect
 - Close monitoring of plant processes for continued performance
 - Perform weekly process control meetings with staff, communications!

Operational Lessons Learned

- Conduct and assess staffing needs
- Audit laboratory equipment
- Audit and purchase process equipment
- Develop in depth round sheets (these are teaching aids, what should the operator expect?)
- Assign coverage areas (if not assigned, no one is responsible!)
- Daily check off sheet (If all else fails make sure this is accomplished...)
- Develop SOP's and MOPO's
- Implement laboratory analysis schedule

QUESTIONS